Skip to main content
Log in

Synthesis of highly monodisperse silica nanoparticles in the microreactor system

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To avoid a poor mixing rate and local inhomogeneities in batch reactor systems, and to shorten the length of microchannels in microreactor systems, a new combined micromixer/microreactor/batch reactor system was used for the synthesis of colloidal silica particles. The silica particles with different sizes (from 20 nm to 2 μm) and size distributions (which were characterized by PDI from 0.01 to 0.40) were controllably synthesized by varying the concentration of reactants and the operating parameters in this system. The long microchannel with small diameter demonstrated a good mixing efficiency, and which produced small and uniform silica particles. In addition, the introduction of inert gas into the system intensified the mixing, and the silica particles with decreased size and narrow distribution were obtained. It was clearly demonstrated that the high mixing efficiency in the microchannel led to small and uniform silica particles. Furthermore, a theoretical foundation for the synthesis of nanoparticles in microreactors was established after illustrating the relationship of mass transfer and reaction in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Liong, B. France, K. A. Bradley and J. I. Zink, Adv. Mater., 21, 1684 (2009).

    Article  CAS  Google Scholar 

  2. C. Yagüe, M. Moros, V. Grazú, M. Arruebo and J. Santamaría, Chem. Eng. J., 137, 45 (2008).

    Article  Google Scholar 

  3. S. A. Johnson, P. J. Ollivier and T. E. Mallouk, Science, 283, 963 (1999).

    Article  CAS  Google Scholar 

  4. H. Yang and Y. Zhu, Talanta, 68, 569 (2006).

    Article  CAS  Google Scholar 

  5. C. J. S. Brinker, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press (1990).

    Google Scholar 

  6. R. K. Iler, The Chemistry of Silica, Wiley (1979).

    Google Scholar 

  7. M. Su, H. J. Su, B. L. Du, X. T. Li, G. Y. Ren and S. D. Wang, J. Sol- Gel. Sci. Technol., 73, 460 (2015).

  8. S. F. Wang, Y. F. Hsu, T. C. K. Yang, C. M. Chang, Y. Chen, C. Y. Huang and F. S. Yen, Mater. Sci. Eng., A, 395, 148 (2005).

    Article  Google Scholar 

  9. J. Z. Wang, A. Sugawara-Narutaki, M. Fukao, T. Yokoi, A. Shimojima and T. Okubo, ACS Appl. Mater. Interfaces, 3, 1538 (2011).

    Article  CAS  Google Scholar 

  10. F. Schüth, Angew. Chem. Int. Ed., 42, 3604 (2003).

    Article  Google Scholar 

  11. C. Liang, Z. Li and S. Dai, Angew. Chem. Int. Ed., 47, 3696 (2008).

    Article  CAS  Google Scholar 

  12. W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 26, 62 (1968).

    Article  Google Scholar 

  13. S. K. Park, K. D. Kim and H. T. Kim, Colloids Surf., A, 197, 7 (2002).

    Article  CAS  Google Scholar 

  14. G. H. Bogush, M. A. Tracy and C. F. Zukoski, J. Non-Cryst. Solids, 104, 95 (1988).

    Article  CAS  Google Scholar 

  15. Z. Lei, Y. Xiao, L. Dang, M. Lu and W. You, Micropor. Mesopor. Mater., 96, 127 (2006).

    Article  CAS  Google Scholar 

  16. R. Lindberg, J. Sjöblom and G. Sundholm, Colloids Surf., A, 99, 79 (1995).

    Article  CAS  Google Scholar 

  17. Y. Huang and J. E. Pemberton, Colloids Surf., A, 360, 175 (2010).

    Article  CAS  Google Scholar 

  18. F. J. Arriagada and K. Osseo-Asare, J. Colloid Interface Sci., 211, 210 (1999).

    Article  CAS  Google Scholar 

  19. C. L. Chang and H. S. Fogler, Langmuir, 13, 3295 (1997).

    Article  CAS  Google Scholar 

  20. J. Esquena, T. F. Tadros, K. Kostarelos and C. Solans, Langmuir, 13, 6400 (1997).

    Article  CAS  Google Scholar 

  21. K. S. Finnie, J. R. Bartlett, C. J. A. Barbé and L. Kong, Langmuir, 23, 3017 (2007).

    Article  CAS  Google Scholar 

  22. F. Venditti, R. Angelico, G. Palazzo, G. Colafemmina, A. Ceglie and F. Lopez, Langmuir, 23, 10063 (2007).

    Article  CAS  Google Scholar 

  23. F. Asaro, A. Benedetti, I. Freris, P. Riello and N. Savko, Langmuir, 26, 12917 (2010).

    Article  CAS  Google Scholar 

  24. K. D. Hartlen, A. P. T. Athanasopoulos and V. Kitaev, Langmuir, 24, 1714 (2008).

    Article  CAS  Google Scholar 

  25. T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo and T. Tatsumi, J. Am. Chem. Soc., 128, 13664 (2006).

    Article  CAS  Google Scholar 

  26. T. M. Davis, M. A. Snyder, J. E. Krohn and M. T. Sapatsis, Chem. Mater., 18, 5814 (2006).

    Article  CAS  Google Scholar 

  27. C. H. Chang, B. Paul, V. Remcho, S. Atre and J. Hutchison, J. Nanopart. Res., 10, 965 (2008).

    Article  CAS  Google Scholar 

  28. E. H. Scott Fogl, Elements of Chemical Reaction Engineering, Prentice-Hall of India (2004).

    Google Scholar 

  29. K. D. Kim and H. T. Kim, J. Sol-Gel Sci. Technol., 25, 183 (2002).

    Article  CAS  Google Scholar 

  30. P. He, G. Greenway and S. J. Haswell, Chem. Eng. J., 167, 694 (2011).

    Article  CAS  Google Scholar 

  31. S. A. Khan, A. Gunther, M. A. Schmidt and K. F. Jensen, Langmuir, 20, 8604 (2004).

    Article  CAS  Google Scholar 

  32. L. Gutierrez, L. Gomez, S. Irusta, M. Arruebo and J. Santamaria, Chem. Eng. J., 171, 674 (2011).

    Article  CAS  Google Scholar 

  33. M. Su, H. J. Su, B. L. Du, X. T. Li, G. Y. Ren and S. D. Wang, J. Sol-Gel. Sci. Technol., 72, 375 (2014).

    Article  CAS  Google Scholar 

  34. M. Faryadi, M. Rahimi and M. Akbari, Korean J. Chem. Eng., 33, 922 (2016).

    Article  CAS  Google Scholar 

  35. Y. Wakashima, A. Suzuki, S. Kawasaki, K. Matsui and Y. Hakuta, J. Chem. Eng. Jpn., 40, 622 (2007).

    Article  CAS  Google Scholar 

  36. E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi and M. Poliakoff, J. Supercrit. Fluids, 37, 209 (2006).

    Article  CAS  Google Scholar 

  37. K. Mae, A. Suzuki, T. Maki, Y. Hakuta, H. Sato and K. Arai, J. Chem. Eng. Jpn., 40, 1101 (2007).

    Article  CAS  Google Scholar 

  38. S. Kawasaki, Y. Xiuyi, K. Sue, Y. Hakuta, A. Suzuki and K. Arai, J. Supercrit. Fluids, 50, 276 (2009).

    Article  CAS  Google Scholar 

  39. Y. Ying, G. Chen, Y. Zhao, S. Li and Q. Yuan, Chem. Eng. J., 135, 209 (2008).

    Article  CAS  Google Scholar 

  40. Y. Huang and J. E. Pemberton, Colloids Surf., A, 377, 76 (2011).

    Article  CAS  Google Scholar 

  41. K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville and M. H. Delville, Langmuir, 21, 1516 (2005).

    Article  CAS  Google Scholar 

  42. T. Matsoukas and E. Gulari, J. Colloid Interface Sci., 124, 252 (1988).

    Article  CAS  Google Scholar 

  43. G. H. Bogush and C. F. Zukoski, J. Colloid Interface Sci., 142, 1 (1991).

    Article  CAS  Google Scholar 

  44. W. G. Klemperer and S. D. Ramamurthi, J. Non-Cryst. Solids, 121, 16 (1990).

    Article  CAS  Google Scholar 

  45. H. Boukari, J. S. Lin and M. T. Harris, J. Colloid Interface Sci., 194, 311 (1997).

    Article  CAS  Google Scholar 

  46. K. Lee, J. L. Look, M. T. Harris and A. V. McCormick, J. Colloid Interface Sci., 194, 78 (1997).

    Article  CAS  Google Scholar 

  47. J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007).

    Article  CAS  Google Scholar 

  48. D. L. Green, S. Jayasundara, Y. F. Lam and M. T. Harris, J. Non-Cryst. Solids, 315, 166 (2003).

    Article  CAS  Google Scholar 

  49. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 72, 4847 (1950).

    Article  CAS  Google Scholar 

  50. J. Guo, X. Lu, Y. Cheng, Y. Li, G. Xu and P. Cui, J. Colloid Interface Sci., 326, 138 (2008).

    Article  CAS  Google Scholar 

  51. D. C. L. Vasconcelos, W. R. Campos, V. Vasconcelos and W. L. Vasconcelos, Mater. Sci. Eng., A, 334, 53 (2002).

    Article  Google Scholar 

  52. R. Watanabe, T. Yokoi, E. Kobayashi, Y. Otsuka, A. Shimojima, T. Okubo and T. Tatsumi, J. Colloid Interface Sci., 360, 1 (2011).

    Article  CAS  Google Scholar 

  53. A. V. Blaaderen, J. V. Geest and A. Vrij, J. Colloid Interface Sci., 154, 481 (1992).

    Article  Google Scholar 

  54. S. M. Chang, M. Lee and W. S. Kim, J. Colloid Interface Sci., 286, 536 (2005).

    Article  CAS  Google Scholar 

  55. J. R. Burns and C. Ramshaw, Chem. Eng. Res. Des., 77, 206 (1999).

    Article  CAS  Google Scholar 

  56. J. Crank, The Mathematics of Diffusion, Oxford Science Publications (1979).

  57. G. S. Laddha and T. E. Degaleesan, Transport Phenomena in Liquid Extraction, McGraw-Hill, New York (1978).

    Google Scholar 

  58. D. F. Othmer and H. T. Chen, Ind. Eng. Chem. Proc. Des. Develop., 1, 249 (1962).

    Article  CAS  Google Scholar 

  59. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, M. A. Bakar, R. Adnan and C. K. Chee, Colloids Surf., A, 294, 102 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M. Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean J. Chem. Eng. 34, 484–494 (2017). https://doi.org/10.1007/s11814-016-0297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0297-x

Keywords

Navigation