Skip to main content
Log in

Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An experimental investigation has been conducted to study the crack growth characteristics of a 90% pure aluminium oxide in 1050 °C air under static and cyclic loads. It is shown that the application of both sustained and fluctuating tensile loads to the ceramic, tested in a precracked four-point bend specimen configuration, results in appreciable subcritical crack growth. The crack velocities under cyclic loading conditions are up to two orders of magnitude slower than those measured in static loading under the same maximum stress intensity factor. Cyclic crack growth rates are markedly affected by the loading frequency, with a decrease in test frequency causing an increase in the rate of crack advance. Detailed optical and electron microscopy observations have been made in an attempt to study the mechanisms of stable crack growth and the mechanistic differences between static fatigue fracture. Under both static and cyclic loads, the predominant mode of fracture is intergranular separation. The presence of a glass phase along the grain boundaries appears to have a strong effect on the mechanisms of crack growth. Apparent differences in the crack velocities between static and cyclic fatigue in alumina arise from crack-wake contact effects as well as from the rate-sensitivity of deformation of the glass phase. Our results also indicate that the cyclic fatigue crack growth rates cannot be predicted solely on the basis of sustained load fracture data. White stable crack growth occurs in the 90% pure alumina over a range of stress intensity factor spanning 1.5 to 5 MPa m1/2, such subcritical fracture is essentially suppressed in a 99.9% pure alumina, ostensibly due to the paucity of a critical amount of glass phase. Both static and cyclic fracture characteristics of the 90% pure alumina are qualitatively similar to those found in an Al2O3-SiC composite wherein situ formation of glass phases, due to the oxidation of SiC in high-temperature air, is known to be an important factor in the fracture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans andE. R. Fuller,Metall. Trans. 5A (1974) 27.

    Google Scholar 

  2. S. Lathabai, Y.-W. Mai andB. R. Lawn,J. Amer. Ceram. Soc. 72 (1989) 1760.

    Google Scholar 

  3. T. Kawakubo, N. Okabe andT. Mori, in “Fatigue 90”, Vol. 2, edited by H. Kitagawa and T. Tanaka (Materials and Component Engineering Publications Ltd, Birmingham, 1990) p. 717.

    Google Scholar 

  4. J. S. Mizushima andW. J. Knapp,Ceram. News 5 (1956) 26–29, 36.

    Google Scholar 

  5. H. N. Ko,J. Mater. Sci. Lett. 5 (1986) 464.

    Google Scholar 

  6. Idem, ibid. 8 (1989) 1438.

    Google Scholar 

  7. K. C. Liu andC. R. Brinkman, in Proceedings of 24th Automotive Technology Development Contractors' Meeting, P-197 (Society of Automotive Engineers, Warrendale, PA, 1987) p. 191.

    Google Scholar 

  8. L. S. Williams,Trans. Br. Ceram. Soc. 55 (1956) 287.

    Google Scholar 

  9. C. P. Chen andW. J. Knapp, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 691.

    Google Scholar 

  10. D. A. Krohn andD. P. H. Hasselman,J. Amer. Ceram. Soc. 55 (1972) 208.

    Google Scholar 

  11. A. G. Evans,Int. J. Fract. 16 (1980) 485.

    Google Scholar 

  12. E. B. Shand,Amer. Ceram. Soc. Bull. 38 (1959) 653.

    Google Scholar 

  13. R. Sedlacek andF. A. Halden, in “Structural Ceramics and Testing of Brittle Materials”, edited by S. J. Acquaviva and S. A. Bortz (Gordon & Breach, New York, 1968) p. 211.

    Google Scholar 

  14. B. K. Sarkar andT. G. J. Quinn,Trans. Br. Ceram. Soc. 69 (1970) 199.

    Google Scholar 

  15. F. Guiu,J. Mater. Sci. Lett. 13 (1978) 1357.

    Google Scholar 

  16. L. Ewart andS. Suresh,ibid. 5 (1986) 774.

    Google Scholar 

  17. Idem, J. Mater. Sci. 22 (1987) 1173.

    Google Scholar 

  18. J. R. Brockenbrough andS. Suresh,J. Mech. Phys. Solids 35 (1987) 721.

    Google Scholar 

  19. S. Suresh andJ. R. Brockenbrough,Acta Metall. 36 (1988) 1455.

    Google Scholar 

  20. S. Suresh, in “Fatigue 90”, Vol. 2, edited by H. Kitagawa and T. Tanaka (Materials and Component Engineering Publications Ltd, Birmingham, 1990) p. 759.

    Google Scholar 

  21. Idem, Int. J. Fract. 42 (1990) 41.

    Google Scholar 

  22. M. J. Reece, F. Guiu andM. F. R. Sammur,J. Amer. Ceram. Soc. 72 (1989) 348.

    Google Scholar 

  23. A. G. Evans, L. R. Russell andD. W. Richerson,Metall. Trans. 6A (1975) 707.

    Google Scholar 

  24. L. X. Han andS. Suresh,J. Amer. Ceram. Soc. 72 (1989) 1233.

    Google Scholar 

  25. L. X. Han, R. Warren andS. Suresh,Acta Metall. Mater. 40 (1992) 259.

    Google Scholar 

  26. L. Ewart, PhD thesis, Brown University (1990).

  27. C. -K. J. Lin andD. F. Socie,J. Amer. Ceram. Soc. 74 (1991) 1511.

    Google Scholar 

  28. T. Fett, G. Himsolt andD. Munz,Adv. Ceram. Mater. 1 (1986) 179.

    Google Scholar 

  29. S. Suresh, “Fatigue of Materials” (Cambridge University Press, Cambridge, England, 1991) pp. 403–56.

    Google Scholar 

  30. R. H. Dauskardt, D. B. Marshall andR. O. Ritchie,J. Amer. Ceram. Soc. 73 (1990) 893.

    Google Scholar 

  31. P. F. Becher andT. N. Tiegs,Adv. Ceram. Mater. 3 (1988) 148.

    Google Scholar 

  32. R. Raj,J. Amer. Ceram. Soc. 69 (1986) 708.

    Google Scholar 

  33. K. Jakus, S. M. Wiederhorn andB. J. Hockey,ibid. 725.

    Google Scholar 

  34. J. R. Porter,Mater. Sci. Engng A107 (1989) 127.

    Google Scholar 

  35. S. W. Freiman, in “Strength of Inorganic Glass”, edited by C. R. Kurkjian (Plenum, New York, 1985) p. 197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewart, L., Suresh, S. Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads. J Mater Sci 27, 5181–5191 (1992). https://doi.org/10.1007/BF00553389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553389

Keywords

Navigation