Skip to main content
Log in

A dislocation network model of recovery-controlled creep

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new model of recovery-controlled creep deformation, based on the jerky glide motion of dislocations between obstacles, is proposed. A three-dimensional distribution of dislocation links is visualized such that only links which attain a certain threshold size,λ a, through recovery can glide rapidly until they are again arrested at the next obstacle. The rate of mobilization of arrested dislocations is shown to be directly proportional to the annihilation rate, ϱa. The strain rate, γ, during transient creep is related to the annihilation rate, the obstacle spacingL and the Burgers vectorb of the dislocations according to the expression

$$\gamma = \alpha _1 \psi (t)\dot \varrho bL$$

where α1 is a geometrical constant and ψ(t) is a time-dependent parameter whose value is determined by the instantaneous (free) dislocation density as well as some salient features of the dislocation distribution. At steady state, ψ(t) translates into a constant which is stress and temperature independent. The average effective dislocation velocity is also shown to be directly proportional to the annihilation rate. The model is used to rationalize the familiar creep transients which are usually observed when the stress is altered abruptly during recovery creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Barrett, W. D. Nix andO. D. Sherby,Trans. ASM 59 (1966) 3.

    CAS  Google Scholar 

  2. O. D. Sherby, R. H. Klundt andA. K. Miller,Met. Trans. 8A (1977) 843.

    CAS  Google Scholar 

  3. O. Ajaja andA. J. Ardell,Phil. Mag. A39 (1979) 65.

    Google Scholar 

  4. J. L. Adelus, V. Guttman andV. D. Scott,Mater. Sci. Eng. 44 (1980) 195.

    Article  CAS  Google Scholar 

  5. C. N. Ahlquist andW. D. Nix,Acta Metall. 19 (1971) 373.

    Article  Google Scholar 

  6. R. Horiuchi andM. Otsuka,Trans. Jpn Inst. Metals. 13 (1972) 284.

    Google Scholar 

  7. E. Orowan,J. West Scotland Iron Steel Inst. 54 (1946) 45.

    Google Scholar 

  8. W. J. Evans andB. Wilshire,Met. Sci. J. 4 (1970) 89.

    CAS  Google Scholar 

  9. T. H. Alden,Metall. Trans. 8A (1977) 1857.

    CAS  Google Scholar 

  10. P. Ostrom andR. Lagneborg,J. Eng. Mater. Tech. (Trans. ASME Series H)98 (1976) 114.

    Google Scholar 

  11. P. P. Gillis, J. J. Gilman andJ. W. Taylor,Phil. Mag. 20 (1969) 279.

    CAS  Google Scholar 

  12. D. J. Lloyd, P. J. Worthington andJ. D. Embury,ibid. 22 (1970) 1147.

    CAS  Google Scholar 

  13. H. J. Frost andM. F. Ashby,J. Appl. Phys. 42 (1971) 5273.

    Article  Google Scholar 

  14. U. F. Kocks, A. S. Argon andM. F. Ashby,Prag. Mater. Sci. 19 (1975) 68.

    Article  Google Scholar 

  15. H. Mecking andK. Lucke,Scripta Metall. 4 (1970) 427.

    Article  Google Scholar 

  16. R. Lagneborg andB. -H. Forsen,Acta Metall. 21 (1973) 781.

    Article  CAS  Google Scholar 

  17. A. Oden, E. Lind andR. Lagneborg, in Proceedings of the Meeting on Creep Strength in Steel and High Temperature Alloys, Sheffield, 1972 (Iron and Steel Institute), p. 60.

    Google Scholar 

  18. A. J.Ardell and M. A.Przystupa,Mech. Mater., in press.

  19. U. F. Kocks andH. Mecking,J. Eng. Mater. Tech., (Trans. ASME Series H)98 (1976) 114.

    Google Scholar 

  20. W. Blum,Phys. Status Solidi (b) 45 (1971) 561.

    CAS  Google Scholar 

  21. J. Hausselt andW. Blum,Acta Metall. 24 (1976) 1027.

    Article  CAS  Google Scholar 

  22. H. Oikawa, M. Maeda andS. Karashima,Scripta Metall. 6 (1972) 339.

    Article  CAS  Google Scholar 

  23. V. Pontikis,Acta Metall. 25 (1977) 847.

    Article  CAS  Google Scholar 

  24. J. P. Poirier,ibid. 25 (1977) 913.

    Article  Google Scholar 

  25. T. Hasegawa, T. Yakov andU. F. Kocks,ibid. 30 (1982) 235.

    Article  CAS  Google Scholar 

  26. V. K. Sikka, H. Nahm andJ. Moteff,Mater. Sci. Eng. 20 (1975) 55.

    Article  CAS  Google Scholar 

  27. R. Gasca-Neri, C. N. Ahlquist andW. D. Nix,Acta Metall. 18 (1970) 655.

    Article  Google Scholar 

  28. O. Ajaja,Scripta Metall. 15 (1981) 975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajaja, O. A dislocation network model of recovery-controlled creep. J Mater Sci 21, 3351–3356 (1986). https://doi.org/10.1007/BF00553380

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553380

Keywords

Navigation