Skip to main content
Log in

Yield strength and anelastic limit of amorphous ductile polymers

Part 1 Amorphous structure and deformation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of amorphous polyethylene below its glass transition temperature is described in some detail. The dimensions, shape and statistical mechanics of a polyethylene chain are already well understood. The packing of such molecular chains is less understood and it is considered here in terms of a CH2 pair distribution function. The pair distribution function is derived on the basis of (i) the variation of specific volume with temperature for completely amorphous and ideally crystalline polyethylene, and (ii) randomness of packing of the molecular chains. A scheme for the description of deformation of amorphous polymers is proposed. Points of constriction along the molecular chain are defined in terms of variation of cross-sectional area of the molecular tube. During deformation the points of constriction are convected with the body of the polymeR. However, the deformation of the chain segment between the points of constriction is analysed in terms of kinematics of chain linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Mitchell andA. H. Windle,Polymer 25 (1984) 906.

    Article  CAS  Google Scholar 

  2. S. M. Wecker, T. Davidson andJ. B. Cohen,J. Mater. Sci. 7 (1972) 1249.

    Article  CAS  Google Scholar 

  3. R. N. Haward, in “The Physics of Glassy Polymers” (Applied Science, London, 1973) Ch. 2.

    Google Scholar 

  4. G. Von Wobser andS. Blasenbrey,Kolliod-Z. u. Z. Polymere 241 (1970) 985.

    Article  CAS  Google Scholar 

  5. A. Odajima andT. Maeda,J. Polym. Sci. 15 (1966) 55.

    CAS  Google Scholar 

  6. P. C. HÄgele andW. Pechhold,Kolloid-Z. u. Z. Polymere 241 (1970) 977.

    Article  Google Scholar 

  7. M. Kobayashi andH. Tadokoro,J. Chem. Phys. 66 (1977) 1258.

    Article  CAS  Google Scholar 

  8. K. Tashiro, M. Kobayashi andH. Tadokoro,Macromolecules 11 (1978) 914.

    Article  CAS  Google Scholar 

  9. B. Crist, M. A. Ratner, A. L. Broner andJ. R. Sabin,J. Appl. Phys. 50 (1979) 6047.

    Article  CAS  Google Scholar 

  10. A. Karpfen,J. Chem. Phys. 75 (1981) 238.

    Article  CAS  Google Scholar 

  11. D. Heyer, U. Buchenau andM. Stamm,J. Polym. Sci. Phys. Ed. 22 (1984) 1515.

    Article  CAS  Google Scholar 

  12. P. J. Flory, in “Statistical Mechanics of Chain Molecules”, (Interscience, New York, 1969) Chs. III and V.

    Google Scholar 

  13. R. G. Kriste, W. A. Krause andK. Ibel,Polymer 16 (1975) 120.

    Article  Google Scholar 

  14. J. Schelten, G. D. Wignall andD. G. H. Ballard,ibid. 15 (1974) 682.

    Article  CAS  Google Scholar 

  15. B. Wunderlich,J. Chem. Phys. 37 (1962) 1203.

    Article  Google Scholar 

  16. Idem, in “Macromolecular Physics”, Vol. 1 (Academic Press, New York, 1973) p. 145.

    Google Scholar 

  17. R. N. Haward, J. N. Hay, I. W. Parson, G. Adam, A. Owadh, C. P. Boxnyak, A. Arefazaf andA. Cross,Colloid Polym. Sci. 258 (1980) 42.

    Article  Google Scholar 

  18. H. Eyring,J. Chem. Phys. 4 (1936) 283.

    Article  CAS  Google Scholar 

  19. R. E. Robertson,ibid. 44 (1960) 3950.

    Article  Google Scholar 

  20. A. S. Argon,J. Macromol. Sci. -Phys. B8 (1973) 673.

    Google Scholar 

  21. P. B. Bowden andS. Raha,Phil. Mag. 29 (1974) 149.

    CAS  Google Scholar 

  22. I. V. Yannas, in Proceedings of the International Symposium on Macromolecules, July 1974, Rio de Janeiro, edited by E. B. Mano, (Elsevier, Rio de Janeiro, 1974), 265.

    Google Scholar 

  23. Z. H. Stachurski,J. Mater. Sci. 21 (1986) 3237.

    CAS  Google Scholar 

  24. A. Abe, R. L. Jerigan andP. J. Flory,J. Amer. Chem. Soc. 88 (1966) 631.

    Article  CAS  Google Scholar 

  25. Yu. K. Ovchinnikiov, G. S. Markova andV. A. Karigin,Polym. Sci. USSR 11 (1969) 369.

    Article  Google Scholar 

  26. E. W. Fischer, G. Leiser andK. Ibel,Polym. Lett. 13 (1975) 39.

    Article  Google Scholar 

  27. P. J. Flory,Faraday Disc. 68 (1979) 15.

    Google Scholar 

  28. R. Lovell, G. R. Mitchell andA. H. Windle,ibid. 68 (1979) 46.

    Article  Google Scholar 

  29. G. Allen, in “Structural Studies of Macromolecules by Spectroscopic Methods”, edited by K. J. Ivin, (John Wiley, London, New York, Sydney, Toronto, 197) p. 1.

  30. W. Fronk andW. Wilke,Colloid Polym. Sci. 259 (1981) 797.

    Article  CAS  Google Scholar 

  31. E. W. Fischer, in “The Physics of Non-Crystalline Solids”, edited by G. H. Frischat, Fourth International Conference, Clausthal-Zellerfeld, 1976 (Trans Tech, 1976) pp. 34–51.

  32. S. Wojnicz-Sianozecki,Roczniki Chemii 1 (1921) 244.

    Google Scholar 

  33. I. V. Yannas andR. R. Luise, in “The Strength and Stiffness of Polymers”, edited by A. E. Zachariades and R. S. Porter, (Marcel Dekker, New York, 1983) 255.

    Google Scholar 

  34. J. S. Beggs, in “Advanced Mechanisms” (Macmillan, New York, 1966) p. 120.

    Google Scholar 

  35. K. H. Hunt, private communication (1984).

  36. M. Doi andS. F. Edwards,JCS Faraday Trans 74 (1978) 1789.

    Article  CAS  Google Scholar 

  37. P-G deGene,J. Chem. Phys. 55 (1971) 572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stachurski, Z.H. Yield strength and anelastic limit of amorphous ductile polymers. J Mater Sci 21, 3231–3236 (1986). https://doi.org/10.1007/BF00553361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553361

Keywords

Navigation