Skip to main content
Log in

Thermomechnical properties of unidirectional composites in their transition region

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The thermomechanical behaviour of polymeric matrices reinforced with long unidirectional fibres in their glass transition region was investigated. Based on rigorous theories for the mechanical moduli and the coefficients of thermal expansion for viscoelastic composites, it was proved analytically that the introduction of reinforcing fillers in polymeric matrices causes glass transition temperature to increase to an extent proportional to the reinforcing effect. This is confirmed by numerous experimental results available in the literature, except for highly-filled composites, where imperfect adhesion may counterbalance the reinforcing effect. Dilatometric as well as two different dynamic mechanical tests confirmed the latter. The variation of glass transition temperature as function of the various aspects of mechanical reinforcement was investigated.

Zusammenfassung

Das thermomechanische Verhalten von mit einachsig verstreckten Faserstücken verstärktem Polymermaterial im Glasübergangsbereich ist Gegenstand der hier diskutierten Untersuchungen. Basierend auf strengen Theorien für die mechanischen Moduln und die Koeffizienten der thermischen Ausdehnung für viskoelastische Mischsubstanzen wurde analysiert, wie eine Einführung des Füllmaterials in die polymere Matrix zu einem Anstieg der Glastemperatur proportional zur Verstärkerwirkung des Füllers bewirkt. Das wird durch ein ausgiebiges experimentelles Material aus der Literatur bestätigt. Nur bei hochgefüllten Mischungen stört unvollständige Adhäsion die Verstärkerwirkung. Dies läßt sich auch dilatometrisch sowie auf zwei verschiedene andere Weisen mit mechanischen Testen zeigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referances

  1. Paipetis, S. A., P. S. Theocaris andA. Marchese Colloid & Polymer Sci.257, 478–485 (1979).

    Google Scholar 

  2. Lee, H. andK. Neville, Handbook of Epoxy Resins, McGraw-Hill Book Company, (New York 1967).

    Google Scholar 

  3. Ferry, J., Viscoelastic Properties of Polymers, J. Wiley and Sons, Inc., (New York-London 1961).

    Google Scholar 

  4. Becker, G. W. andH. Oberst, Colloid & Polymer Sci.148, 6 (1956).

    Google Scholar 

  5. Blatz, P. J., Ind. Eng. Chem.48, 727 (1956).

    Google Scholar 

  6. Delatycki, O., J. C. Shaw andJ. G. Williams, J. Polym. Sci., Part A-2,7, 753–762 (1969).

    Google Scholar 

  7. Hirai, T. andD. E. Kline, J. Appl. Polym. Sci.17, 31–44 (1973).

    Google Scholar 

  8. Jenkins, R., J. Appl. Polym. Sci.11, 171–177 (1967).

    Google Scholar 

  9. Kreahling, R. P. andD. E. Kline, J. Appl. Polym. Sci.13, 2411–2425 (1969).

    Google Scholar 

  10. Paipetis, S. A., G. C. Papanicolaou andP. S. Theocaris, Fib. Sci. Technology8, 3, 221–242 (1975).

    Google Scholar 

  11. Papanicolaou, G. C., S. A. Paipetis andP. S. Theocaris, J. Appl. Polym. Sci.21, 689–701 (1977).

    Google Scholar 

  12. Papanicolaou, G. C., S. A. Paipetis andP. S. Tbeocaris, Colloid & Polymer Sci.256, 625–630 (1978).

    Google Scholar 

  13. Tauchert, T. R. andN. N. Hsu, J. Comp. Materials7, 516–520 (1973).

    Google Scholar 

  14. Chamis, C. C. andG. P. Sendekyj, J. Comp. Materials2, 332–358 (1968).

    Google Scholar 

  15. Schapery, R. A., J. Comp. Materials2, 380–404 (1968).

    Google Scholar 

  16. Marom, G. andA. Weinberg, J. Materials Sci.10, 1005–1010 (1975).

    Google Scholar 

  17. Van Fo Fy, G. A., PMTF4, 118–121 (1965).

    Google Scholar 

  18. Levin, V. M., Mekhanika Tverdogo Tela2, 1, 88–94 (1967).

    Google Scholar 

  19. Fahmy, A. A. andA. N. Ragai-Ellozy, J. Comp. Materials8, 90–92 (1974).

    Google Scholar 

  20. Pagano, N. J., J. Comp. Materials8, 310–312 (1974).

    Google Scholar 

  21. Fahmy, A. A. andA. N. Ragai, J. Appl. Phys.41, 13, 5112–5115 (1970).

    Google Scholar 

  22. Jeness, Jr., J. R. andD. E. Kline, J. Appl. Polym. Sci.17, 3391–3422 (1973).

    Google Scholar 

  23. Payne, A. R., in: Rheology of Elastomers, P. Mason and N. Wookey (Editors), Pergamon Press, (London 1958).

    Google Scholar 

  24. Bueche, A. M., J. Polym. Sci,25, 139 (1957).

    Google Scholar 

  25. Hasbin, Z., Int. J. Solids Structures6, 797–807 (1970).

    Google Scholar 

  26. Hasbin, Z. andB. W. Rosen, J. Appl. Mechanics31, 223 (1964).

    Google Scholar 

  27. Van Fo Fy, G. A., in: Fibrous Composites, I. N. Frantsevitch and D. M. Karpinos (Editors), Academy of Sciences of the Ukrainian SSR, Israel Program for Scientific Translations (1972).

  28. Paipetis, S. A. andP. Grootenhuis, Fib. Sci. Technology12, 5, 353–376 (1979).

    Google Scholar 

  29. Landel, R. F., Trans. Soc. Rheology2, 53 (1958).

    Google Scholar 

  30. Ogorkiewicz, R. M., J. Mech. Eng. Sci.15, 2, 102–108 (1973).

    Google Scholar 

  31. Ogorkiewicz, R. M., Composites, 117-121, May 1974.

  32. Theocaris, P. S. andS. A. Paipetis, (Unpublished work).

  33. Theocaris, P. S., Colloid & Polymer Sci.235, 1, 1182–1188 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paipetis, S.A. Thermomechnical properties of unidirectional composites in their transition region. Colloid & Polymer Sci 258, 42–50 (1980). https://doi.org/10.1007/BF01474952

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474952

Keywords

Navigation