Skip to main content
Log in

Splat cooling of iron-molybdenum-carbon alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two molybdenum alloy steels, which normally undergo the austenite → martensite phase transformation during solid state quenching, have been rapidly cooled from the melt in a controlled atmosphere “gun” splat cooling device. The matrix phases produced wereδ-ferrite, martensite, and austenite; the carbide Mo2C was also present in the as-quenched condition in the higher alloy composition studied. The amount of austenite retained to room temperature was found to be inversely related to the cooling rate. The morphology of the martensite in the splat-cooled alloys exhibited a marked change compared with its characteristic appearance in the conventionally solid-state quenched material. This was attributed to the dual effect of increased cooling rate on carbon segregation in the parent austenite and of decreased section thickness in which the martensite forms. The degree of solute segregation observed in the microstructures of the matrix phases was shown to depend on the extent of the equilibrium liquidus-solidus temperature range. The precipitation of Mo2C during ageing in the range 600 to 700° C paralleled the behaviour of conventionally quenched and tempered alloys, although local inhomogeneities did produce precipitation phenomena not encountered in solid-state quenched material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Raynor, J. A. Whiteman andR. W. K. Honeycombe,J. Iron Steel Inst. 204 (1966) 349.

    Google Scholar 

  2. Idem, ibid 204 (1966) 1114.

    Google Scholar 

  3. R. C. Ruhl andM. Cohen,Trans. Met. Soc. AIME 245 (1969) 241.

    Google Scholar 

  4. M. Hansen andK. Anderko, “Constitution of Binary Alloys”, 2nd edn (McGaw-Hill, New York, 1958).

    Google Scholar 

  5. R. C. Ruhl andM. Cohen,Trans. Met. Soc, AIME 245 (1969) 253.

    Google Scholar 

  6. A Brown, Ph.D. Dissertation, University of Cambridge (1973).

  7. J. Zboril andZ. Posedel,Z. Metallk. 61 (1970) 214.

    Google Scholar 

  8. J. V. Wood andI. R. Sare, Proceedings of the Second International Conference on Rapidly Quenched Alloys, edited by N. J. Grant and B. C. Giessen (MIT Press, Cambridge, Mass., 1976) p. 87.

    Google Scholar 

  9. C. S. Roberts, B. L. Averbach andM. Cohen,Trans. ASM 45 (1953) 576.

    Google Scholar 

  10. P. Ramachandrarao, P. Rama Rao andT. R. Anantharaman,Z. Metallk. 61 (1970) 471.

    Google Scholar 

  11. A. Kirin andA. Bonefacic,J. Phys. F:Metal Phys. 4 (1974) 1608.

    Google Scholar 

  12. J. Wood andI. Sare,Met Trans. A. 6A (1975) 2153.

    Google Scholar 

  13. J. V. Wood andR. W. K. Honeycombe,J. Mater. Sci. 9 (1974) 1183.

    Google Scholar 

  14. W. Pitsch andA. Schrader,Arch. Eisenhüttenw. 29 (1958) 715.

    Google Scholar 

  15. G. R. Speich,Trans. Met Soc, AIME 224 (1962) 850.

    Google Scholar 

  16. M. Cohen,Trans. ASM 41 (1949) 35.

    Google Scholar 

  17. H. R. Woehrle, W. R. Clough andG. S. Ansell,ibid. 59 (1966) 784.

    Google Scholar 

  18. R. W. Messler, G. S. Ansell andV. I. Lizunov,ibid. 62 (1969) 362.

    Google Scholar 

  19. Y. Inokuti andB. Cantor,Scripta Met. 10 (1976) 655.

    Google Scholar 

  20. W. T. Olsen andR. Hultgren,Trans. AIME 188 (1950) 1323.

    Google Scholar 

  21. H. Biloni andB. Chalmers,Trans. Met. Soc. AIME 233 (1965) 373.

    Google Scholar 

  22. K. Löhberg andH. Müller,Z. Metallk. 60 (1969) 231.

    Google Scholar 

  23. “Metals Handbook”, 8th edn, Vol. 8 (ASM, Ohio, 1973) p. 410.

  24. I. S. Miroshnichenko andG. P. Brekharya,Phys. Met. Metallog. 29 (1970) 233.

    Google Scholar 

  25. G. S. Ansell, S. J. Donachie andR. W. Messler,Met. Trans. 2 (1971) 2443.

    Google Scholar 

  26. S. J. Donachie andG. S. Ansell,Met Trans. A. 6A (1975) 1863.

    Google Scholar 

  27. W. Pitsch,Phil. Mag. 4 (1959) 577.

    Google Scholar 

  28. Idem, J. Inst. Metals 87 (1959) 444.

    Google Scholar 

  29. H. Warlimont,Trans. Met. Soc. AIME 221 (1961) 1270.

    Google Scholar 

  30. J. Gaggero andD. Hull,Acta Met. 10 (1962) 995.

    Google Scholar 

  31. K. Kuo,J. Iron Steel Inst. 173 (1953) 363.

    Google Scholar 

  32. R. W. Cahn “Physical Metallurgy”, 2nd revised edn, edited by R. W. Cahn (North-Holland, London, 1970) p. 1129.

    Google Scholar 

  33. E. C. Rollason, “Fundamental Aspects of Molybdenum on Transformation of Steel” (Climax Molybdenum, London, 1962).

    Google Scholar 

  34. R. W. Balluffi, M. Cohen andB. L. Averbach,Trans. ASM 43 (1951) 497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sare, I.R., Honeycombe, R.W.K. Splat cooling of iron-molybdenum-carbon alloys. J Mater Sci 13, 1991–2002 (1978). https://doi.org/10.1007/BF00552907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552907

Keywords

Navigation