Skip to main content
Log in

Grain rearrangements during superplastic deformation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Current models for obtaining large superplastic flow without change of grain size are two-dimensional; they therefore involve rearrangement of grains without increasing the surface area of the specimen as it deforms. A new model is proposed in which grainboundary sliding (GBS) in a group of grains is accommodated by a grain emerging from the next layer of grains, giving the correct increase in surface area. This also produces curved grain boundaries and there is some rotation of grains involving plastic flow in a zone along grain boundaries (the “mantle”) of predictable width. Grains do not have to be uniform and regular for the process. Characteristic configurations of marker lines are produced by the deformation. All these features are shown to have been observed in the literature. The model does not predict a threshold stress. It can be linked with a previous constitutive equation based on the climb and glide of dislocations in the grain mantles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Ashby andR. A. Verrall,Acta Met. 2l (1973) 149.

    Google Scholar 

  2. R. C. Gifkins,Met. Trans. 7A (1976) 1225.

    Google Scholar 

  3. T. G. Langdon andF. A. Mohamed,Scripta Met. 11 (1977) 575.

    Google Scholar 

  4. A. Ball andM. M. Hutchison,Metal Sci. J. 3 (1969) 1.

    Google Scholar 

  5. A. K. Mukherjee,Mater Sci. Eng. 8 (1971) 83.

    Google Scholar 

  6. K. A. Padmanabahn,ibid. 29 (1977) 1.

    Google Scholar 

  7. W. A. Rachinger,J. Inst Metals 81 (1952–53) 33.

    Google Scholar 

  8. M. F. Ashby,Surface Sci. 31 (1971) 498.

    Google Scholar 

  9. R. C. Gifkins,Met. Trans. 8A (1977) 1507.

    Google Scholar 

  10. T.-S. KÊ,J. Appl. Phys. 20 (1949) 274.

    Google Scholar 

  11. R. C. Gifkins,J. Inst. Metals 82 (1953–54) 39.

    Google Scholar 

  12. E. H. Aigeltinger andR. C. Gifkins,Met. Trans. 6A (1975) 2310.

    Google Scholar 

  13. R. C. Gifkins,Nature 169 (1952) 238.

    Google Scholar 

  14. H. Naziri, R. Pearce, M. Henderson-Brown andK. F. Hale,Acta Met. 23 (1975) 489.

    Google Scholar 

  15. K. Matsuki, H. Morita, M. Yamada andY. Murakami,Metal Sci. 11 (1977) 156.

    Google Scholar 

  16. R. C. Gifkins,Bull. Inst Metals 4 (1958) 117.

    Google Scholar 

  17. R. L. Squires, R. T. Weiner andM. Phillips,J. Nuclear Mater. 8 (1967) 77.

    Google Scholar 

  18. E. H. Aigeltinger andR. C. Gifkins,J. Mater. Sci. 10 (1975) 1889.

    Google Scholar 

  19. R. C. Gifkins, T. G. Langdon andD. McLean,Met. Sci. 9 (1975) 141.

    Google Scholar 

  20. R. C. Gifkins,J. Australian Inst. Metals 17 (1973) 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gifkins, R.C. Grain rearrangements during superplastic deformation. J Mater Sci 13, 1926–1936 (1978). https://doi.org/10.1007/BF00552899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552899

Keywords

Navigation