Skip to main content
Log in

The energy of crack propagation in carbon fibre-reinforced resin systems

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The energy expended during controlled crack propagation in unidirectionally reinforced composites of carbon fibre in a brittle resin matrix has been evaluated in terms of the energy dissipated during fibre-snapping, matrix-cracking and fibre pull-out. The work of fracture, γ F, is found to depend principally on the frictional shear stress at the fibre/resin interface opposing pulling out of broken fibres. Differences in γ F for carbon fibre/resin composites exhibiting a range of interfacial shear strengths and void contents have been explained with reference to variations in fracture surface topography of the fibrous composites. The effect of environment on properties of the interface and work of fracture was also investigated. The energy required to propagate a crack has been compared with the energy for fracture initiation, γ I, using a linear elastic fracture mechanics approach. It was found that fibre pull-out energy is the principal contribution to γ F, and γ I is similar to the elastic strain energy release rate at the initiation of fracture of a brittle, orthotropic solid. For crack propagation parallel to fibres, γ F and γ I are similar and not unlike the fracture surface energy of the resin alone. The strength of the interface is important only in so far as it affects the value of γ I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith, Phil. Trans. Roy. Soc. A221 (1921) 163.

    Google Scholar 

  2. P. W. R. Beaumont and D. C. Phillips, J. Mater. Sci. 7 (1972) 682.

    Google Scholar 

  3. B. Harris, P. W. R. Beaumont, and E. Moncunill De Ferran, ibid 6 (1971) 238.

    Google Scholar 

  4. J. Fitzrandolph, D. C. Phillips, P. W. R. Beaumont, and A. S. Tetelman, ibid 7 (1972) 289.

    Google Scholar 

  5. J. O. Outwater and M. C. Murphy, 24th Annual Conference of Reinforced Plastics/Composites Division of Soc. Plastics Ind., paper 11-C (1969).

  6. A. H. Cottrell, Proc. Roy. Soc. A282 (1964) 2.

    Google Scholar 

  7. G. C. Sih, P. C. Paris, and G. R. Irwin, Internat. J. Fracture Mech. 1 (1965) 189.

    Google Scholar 

  8. E. M. Wu, J. Applied Mech. Trans. ASME, Series E, 34 (1967) 967.

    Google Scholar 

  9. G. R. Irwin, “Handbuch der Physik”, 6 (Springer-Verlag, Berlin, 1958) 551.

    Google Scholar 

  10. S. W. Tsai, “Formulas for the Elastic Properties of Fiber Reinforced Composites”, Monsanto/Washington University ONR/ARPA Association, HPC 68-61 (1968).

  11. P. W. R. Beaumont, “Fracture and Fatigue of Carbon Fibre Reinforced Plastics”, D.Phil. Thesis, School of Applied Sciences, University of Sussex (1971).

  12. M. Isida, unpublished data described by W. F. Brown and J. E. Srawley, “Plane Strain Crack Toughness Testing of High Strength Metallic Materials”, ASTM, STP 410, 1966 p. 11.

    Google Scholar 

  13. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.

    Google Scholar 

  14. B. Gross and J. E. Srawley, Technical Note D-3092, NASA, December, 1965. (Described in ASTM STP 410 p. 13.)

  15. L. B. Greszczuk, “Effect of Voids on Strength Properties of Filamentary Composites”, Conference of Reinforced Plastics/Composites Division of SPI, 1967.

  16. B. Budiansky, J. Mech. Phys. Solids 13 (1965) 223.

    Google Scholar 

  17. R. L. Foye, AIAA paper no. 66-143, (1966).

  18. N. A. Weil, “Parametric Effects on the Mechanics of Ceramic Materials”, Symp. on Ceramic Materials (1966).

  19. B. W. Rosen, AIAA J. 2 (1964) 1985.

    Google Scholar 

  20. R. C. Wyatt and K. H. G. Ashbee, Fibre Sci. and Tech. 2 (1969) 29.

    Google Scholar 

  21. P. W. R. Beaumont and B. Harris, “Effect of the Fibre-Matrix Interface on the Fracture Toughness of Carbon Fibre Resin Composites”, Fifth Symposium on Advanced Composites, St. Louis, Missouri, Washington University/Monsanto (April 1971).

    Google Scholar 

  22. R. G. C. Arridge, Nature 223 (1969) 941.

    Google Scholar 

  23. J. M. Lifshitz and A. Rotem, Fibre Sci. and Tech. 3 (1970) 1.

    Google Scholar 

  24. A. Kelly and G. J. Davies, Met. Rev. 10 (1965) 1.

    Google Scholar 

  25. B. Harris, P. W. R. Beaumont, and A. Rosen, J. Mater. Sci. 4 (1969) 432.

    Google Scholar 

  26. P. Hancock and R. C. Cuthbertson, ibid 5 (1970) 762.

    Google Scholar 

  27. P. W. R. Beaumont and D. C. Phillips, J. Comp. Mater. 6 (1972) 32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumont, P.W.R., Harris, B. The energy of crack propagation in carbon fibre-reinforced resin systems. J Mater Sci 7, 1265–1279 (1972). https://doi.org/10.1007/BF00550692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550692

Keywords

Navigation