Skip to main content
Log in

On the formation of thermally sprayed alumina coatings

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model for the fomation of thermally sprayed alumina coatings is proposed. The spreading and crystallization of liquid droplets on impact with the substrate are analysed and the thermal history of individual particles related to the kinetics of nucleation of γ-Al2O3 to other forms. The results suggest that under the usual spraying conditions undercooling of the liquid droplets is such that γ-Al2O3 nucleates in preference to α-Al2O3 and the cooling rate after solidification is sufficiently rapid to prevent transformation to δ-Al2O3 or α-Al2O3. Transformation of initially formed γ-Al2O3 to α-Al2O3 appears to be possible only if the lamellae formed on impact are thicker than about 10 μm if the substrate is heated to about 1000° C, or if the thickness is greater than about 20 μm on an unheated substrate. The α-Al2O3 generally observed in thermally sprayed coatings is the result of crystallization from pre-existing nuclei arising from incomplete melting of the feed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Ingham and A. P. Shepard, “METCO Flame Spray Handbook” (METCO, New York, 1965).

    Google Scholar 

  2. N. N. Ault, J. Amer. Ceram. Soc. 40 (1957) 69.

    Google Scholar 

  3. V. S. Thompson and O. J. Whittemore, Bull. Amer. Ceram. Soc. 47 (1968) 637.

    Google Scholar 

  4. P. Zoltowski, Rev. Int. Hautes. Temper. et Refract. 6 (1969) 65.

    Google Scholar 

  5. V. F. Eichorn, J. Metzler and W. Eysel, Metalloberflache 26 (1972) 212.

    Google Scholar 

  6. I. R. Kozlova, Izv. Akad. Nauk. S.S.S.R. Neorg. Mat. 7 (1971) 1372.

    Google Scholar 

  7. D. G. Moore, A. G. Eubanks, H. R. Thornton, W. D. Hayes and A. W. Crigler, Technical Report Number A.R.L. 59, Contract AF 33 (616)-58-19 Final Summary Report 1961.

  8. J. B. Huffadine and A. G. Thomas, Powder Metall. 7 (1964) 290.

    Google Scholar 

  9. T. V. Sokolova, I. R. Kozolva, Kh. Derko and A. V. Kiiko, Izv. Akad. Nauk. S.S.S.R. Neorg. Mat. 9 (1973) 611.

    Google Scholar 

  10. P. Zoltowski, Rev. Int. Hautes. Temper. et Refract. 5 (1968) 253.

    Google Scholar 

  11. K. Wefars and G. M. Bell, Technical Paper No. 19, Alcoa Research Laboratories, 1972.

  12. A. F. Wells, “Structural Inorganic Chemistry” (Clarendon Press, Oxford, 1962) p. 560.

    Google Scholar 

  13. B. C. Lippens and J. H. De Boer, Acta. Cryst. 17 (1964) 1312.

    Google Scholar 

  14. G. Ervin, ibid. 5 (1952) 103.

    Google Scholar 

  15. A. M. Lejus, Rev. Int. Hautes. Temper. et Refract. 1 (1964) 53.

    Google Scholar 

  16. D. S. MacIver, H. H. Tobin and R. T. Bath, J. Catalysis 2 (1963) 485.

    Google Scholar 

  17. A. L. Dragoo and J. J. Diamond, J. Amer. Ceram. Soc. 50 (1967) 568.

    Google Scholar 

  18. J. M. Cowley, Acta Cryst. 6 (1953) 53.

    Google Scholar 

  19. H. P. Rooksby and C. J. M. Rooymans, Clay Minerals Bull. 4 (1961) 234.

    Google Scholar 

  20. A. Lefebvre, J. Appl. Cryst. 8 (1975) 235.

    Google Scholar 

  21. G. Yamaguchi, I. Yasui and W. Chui, Bull. Chem. Soc. Japan 43 (1970) 2487.

    Google Scholar 

  22. R. McPherson, J. Mater. Sci. 8 (1973) 859.

    Google Scholar 

  23. S. Geller, J. Chem. Phys. 33 (1960) 626.

    Google Scholar 

  24. M. Plummer, J. Appl. Chem. 8 (1958) 35.

    Google Scholar 

  25. A. Nukui, H. Tagai, H. Morikawa and S. I. Iwai, J. Amer. Ceram. Soc. 59 (1976) 534.

    Google Scholar 

  26. R. McPherson, J. Mater. Sci. 8 (1973) 851.

    Google Scholar 

  27. M. W. Chase, J. L. Curnutt, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data 7 (1978) 793.

    Google Scholar 

  28. K. Lohberg and H. Muller, Z. Mettalkunde 60 (1969) 231.

    Google Scholar 

  29. I. S. Miroshnichenko and V. A. Zakharov, Ind. Lab. 39 (1969) 362.

    Google Scholar 

  30. H. Jones, J. Phys. D 4 (1971) 1657.

    Google Scholar 

  31. J. Madejski, Int. J. Heat Mass Transfer 19 (1976) 1009.

    Google Scholar 

  32. B. S. Mintin and Yu. A. Nagibin, Zh. Fiz. Khim. 44 (1970) 1325.

    Google Scholar 

  33. A. Vardelle, M. Vardelle, R. McPherson and P. Fauchais, Proceedings of the Ninth International Thermal Spraying Conference, Amsterdam, May 1980 (Netherlands Institute of Lastechniek, The Hague, 1980) p. 155.

    Google Scholar 

  34. V. P. Elyutin, V. I. Kostikov, B. S. Minton and Yu. A. Nagibin, Russ. J. Chem. 43 (1969) 316.

    Google Scholar 

  35. H. Jones, Rep. Prog. Phys. 36 (1973) 1425.

    Google Scholar 

  36. R. C. Ruhl, Mater. Sci. Eng. 1 (1967) 313.

    Google Scholar 

  37. V. Wilms and H. Herman, Thin Solid Films 39 (1976) 251.

    Google Scholar 

  38. F. Kreith, “Principles of Heat Transfer” (Intext Educational Publishers, New York, 1973) p. 140.

    Google Scholar 

  39. C. J. P. Steiner, D. P. H. Hasselman and R. M. Spriggs, J. Amer. Ceram. Soc. 54 (1972) 412.

    Google Scholar 

  40. R. Linguet, G. Rodier and J. Rogers, Bull. Soc. Fr. Ceram. 54 (1961) 39.

    Google Scholar 

  41. M. S. J. Gani and R. McPherson, J. Aust. Ceram. Soc. 8 (1972) 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPherson, R. On the formation of thermally sprayed alumina coatings. J Mater Sci 15, 3141–3149 (1980). https://doi.org/10.1007/BF00550387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550387

Keywords

Navigation