Skip to main content
Log in

Uniplanar-axial orientation in hot-rolled polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The orientations produced by high temperature rolling of polyoxymethylene (126 ‡C) and polytetrafluoroethylene (150 ‡C) and nylon 66 are examined by pole figures. No evidence is found to support the theory of Akahane and Mochizuki that it is the plane of the zig-zag chains that orientates into the rolling plane in nylon 66. The classical rolling texture of Bunn and Garner describes the pole figures except for the (100) pole, which is observed at 28 ‡ to the transverse direction; in the texture of Bunn and Garner it should occur at 24 ‡. In hot-rolled polyoxymethylene the texture observed corresponds to a unique orientation of the hexagonal unit cell: (10¯10) planes parallel to the rolling plane and c-axis parallel to rolling direction. The polyoxymethylene texture differs significantly from the pseudo-fibre textures observed in the cold-rolled polymer. The rolling texture of hot-rolled polytetrafluoroethylene is similar to that of hot-rolled polyoxymethylene. These results show the plastic slip system in polyoxymethylene and polytetrafluoroethylene to be (10¯10) [0001].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Bunn and E. V. Garner, Proc. Roy. Soc. A189 (1947) 39.

    Google Scholar 

  2. C. J. Heffelfinger and R. L. Burton, J. Polymer Sci. 47 (1960) 289.

    Google Scholar 

  3. D. M. Gezovich and P. H. Geil, J. Mater. Sci. 6 (1971) 509.

    Google Scholar 

  4. F. C. Frank, A. Keller, and A. O'Connor, Phil. Mag. 3 (1958) 64.

    Google Scholar 

  5. I. L. Hay and A. Keller, J. Mater. Sci. 1 (1966) 41.

    Google Scholar 

  6. J. J. Point, G. A. Homes, D. Gezovich, and A. Keller, ibid 4 (1969) 908.

    Google Scholar 

  7. Z. W. Wilchinsky, J. Appl. Phys. 31 (1960) 1969; J. Appl. Polymer Sci. 7 (1963) 923.

    Google Scholar 

  8. P. H. Geil, “Polymer Single Crystals” (Wiley Interscience, New York, 1963), Chapter VII, Section 6.

    Google Scholar 

  9. D. A. Zaukelies, J. Appl. Phys. 33 (1962) 2797.

    Google Scholar 

  10. T. Akahane and T. Mochizuki, J. Polymer Sci. Part B 8 (1970) 487.

    Google Scholar 

  11. J. J. Point, M. Dosiere, M. Gilliot, and A. Goffin-Gerin, J. Mater. Sci. 6 (1971) 479.

    Google Scholar 

  12. D. M. Gezovich and P. H. Geil, ibid 6 (1971) 531.

    Google Scholar 

  13. H. W. Starkweather, F. C. Wilson, and E. S. Clark, J. Polymer Sci. Part B, 9 (1971) 623.

    Google Scholar 

  14. C. P. Buckley, R. W. Gray, and N. G. McCrum, ibid Part B, 8 (1970) 341.

    Google Scholar 

  15. P. H. Lindenmeyer and S. Lustig, J. Appl. Polymer Sci. 9 (1965) 227.

    Google Scholar 

  16. C. Barrett and T. B. Massalski, “Structure of Metals”, 3rd Ed. (McGraw-Hill, New York, 1966) p. 561.

    Google Scholar 

  17. G. B. Dunnington and R. T. Fields, US patent 3 354 023 (11/21/67).

  18. H. W. Starkweather, J. Macromol. Sci. Phys. 3 (1969) 727.

    Google Scholar 

  19. A. G. Atkins and N. G. Mccrum, Patent Pending.

  20. G. A. Carazzolo, J. Polymer Sci. Part A, 1 (1963) 1573.

    Google Scholar 

  21. E. S. Clark and L. T. Muus, Z. Krist. 117 (1962) 119.

    Google Scholar 

  22. K. Tanaka, Y. Tajima, H. Kiho, and K. Asai, Japan J. Appl. Phys. 7 (1968) 186.

    Google Scholar 

  23. D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polymer Sci. 17 (1955) 159.

    Google Scholar 

  24. P. Dreyfuss, A. Keller, and F. M. Willmouth, ibid A2 10 (1972) 857; E. D. T. Atkins, A. Keller, and D. M. Sadler, ibid, 10 (1972) 863.

    Google Scholar 

  25. G. T. Davis, R. K. Eby, and G. M. Martin, J. Appl. Phys. 39 (1968) 4973.

    Google Scholar 

  26. I. Boukal, J. Appl. Polymer Sci. 11 (1967) 1483.

    Google Scholar 

  27. E. S. Clark, private communication.

  28. J. E. Preedy and E. J. Wheeler, Nature, Phys. Sci. 236 (1972) 60.

    Google Scholar 

  29. G. A. Carazzolo and M. Mammi, J. Polymer Sci. A1 (1963) 965.

    Google Scholar 

  30. Idem, Makromol. Chem. 100 (1967) 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, E.P., Gray, R.W. & McCrum, N.G. Uniplanar-axial orientation in hot-rolled polymers. J Mater Sci 8, 397–406 (1973). https://doi.org/10.1007/BF00550161

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550161

Keywords

Navigation