Skip to main content
Log in

Deformation behaviors in isotactic polypropylene during rolling

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Wide angle X-ray diffraction is used to measure the texture evolution of isotactic polypropylene (iPP) during rolling. Pole figures, orientation distribution functions and crystallinities of the rolled iPP are obtained and calculated. The texture evolution is also simulated by the modeling. It can be drawn that the main deformation mechanisms occurred at low strain is the coarse slips on few planes and the amorphization because of the special mother and daughter lamellae of the material, which leads to the crystallinity decreases greatly. As the true strain increases, mother and daughter lamellae are broken, then, the following deformation does not be controlled by the special structure of α-iPP. The basic deformation mechanisms in the rolled iPP is the crystallographic slips, and the main slip systems are (010)[001] and (100)[001] chain slips and (010)[100] transverse slip and so on. Amorphization is also a deformation mechanism which may take place as an alternative to crystallographic slip depending on the crystallographic orientation of a lamella. The [001]‖RD fiber texture, which includes several (hk0)[001] texture components is the main texture component in the rolled iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peterlin, J. Mater. Sci. 6, 490 (1971).

    Article  CAS  Google Scholar 

  2. L. Lin and A. S. Argon, J. Mater. Sci. 29, 294 (1994).

    Article  CAS  Google Scholar 

  3. A. Galeski, Prog. Polym. Sci. 28, 1643 (2003).

    Article  CAS  Google Scholar 

  4. A. Bellare, R. E. Cohen, and A. S. Argon, Polymer 34, 1393 (1993).

    Article  CAS  Google Scholar 

  5. Z. Bartczak, A. Galeski, A. S. Argon, and R. E. Cohen, Polymer 37, 2113 (1996).

    Article  CAS  Google Scholar 

  6. Z. Bartczak, A. S. Argon, and R. E. Cohen, Polymer 35, 3427 (1994).

    Article  CAS  Google Scholar 

  7. B. J. Lee, A. S. Argon, D. M. Parks, S. Ahzi, and Z. Bartczak, Polymr 34, 3555 (1993).

    Article  CAS  Google Scholar 

  8. Z. Bartczak, R. E. Cohen, and A. S. Argon, Macromolecules 25, 4692 (1992).

    Article  CAS  Google Scholar 

  9. Z. Bartczak, A. S. Argon, and R. E. Cohen, Macromolecules 25, 5036 (1992).

    Article  CAS  Google Scholar 

  10. P. B. Bowden and R. J. Young, J. Mater. Sci. 9, 2034 (1974).

    Article  CAS  Google Scholar 

  11. Les Editions de Physique, Ed. By J. M. Haudin, B. Escaig and C. G’Sell (Les Ulis, 1982), p. 291.

    Google Scholar 

  12. J. Qiu, T. Murata, X. Wu, M. Kudo, E. Sakai, J. Mater. Sci. 48, 1920 (2013).

    Article  CAS  Google Scholar 

  13. J. R. Hirsch and P. T. Wang, Textures Microstruct. 13, 101 (1991).

    Article  Google Scholar 

  14. L. Lin and A. S. Argon, Macromolecules 25, 4011 (1992).

    Article  CAS  Google Scholar 

  15. Z. Bartczak, J. Morawiec, and A. Galeski, J. Appl. Polym. Sci. 86, 1413 (2002).

    Article  CAS  Google Scholar 

  16. E. F. Oleinik, Polym. Sci., Ser. C 45, 17 (2003).

    Google Scholar 

  17. R. Seguela, e-Polym. 7, 382 (2013).

    Google Scholar 

  18. V. A. Marikhin and L. P. Myasnikova, J. Appl. Polym. Sci.: Appl. Polym. Symp. 58, 97 (1977).

    CAS  Google Scholar 

  19. A. H. I. Mourad, N. Bekheet, A. El-Butch, L. Abdel-Latif, D. Nafee, D. C. Barton, Polym. Test. 24, 169 (2005).

    Article  CAS  Google Scholar 

  20. M. Aboulfaraj, C. G’sell, B. Ulrich, and A. Dahoun, Polymer 36, 731 (1995).

    Article  CAS  Google Scholar 

  21. G. Coulon, G. Castelein, and C. G’Sell, Polymer 40, 95 (1998).

    Article  Google Scholar 

  22. K. Helming, R.A. Schwarzer, B. Rauschenbach, S. Geier, B. Leiss, H. R. Wenk, K. Ullemeier, J. Heinitz, Z. Metallkd. 85, 545 (1994).

    CAS  Google Scholar 

  23. S. Nikolov, R. A. Lebensohn, and D. Raabe, J. Mech. Phys. Solids 54, 1350 (2006).

    Article  CAS  Google Scholar 

  24. Z. Bartczak and A. Galeski, Polymer 40, 3677 (1999).

    Article  CAS  Google Scholar 

  25. D. Shinozaki and G. W. Groves, J. Mater. Sci. 8, 71 (1973).

    Article  CAS  Google Scholar 

  26. R. M. Caddell, R. S. Raghava, and A. G. Atkins, J. Mater. Sci. 8, 1641 (1973).

    Article  CAS  Google Scholar 

  27. M. Pluta, Z. Bartczak, and A. Galeski, Polymer 41, 2271 (2000).

    Article  CAS  Google Scholar 

  28. Y. F. Men, J. Rieger, and G. Strobl, Phys. Rev. Lett. 91, 095502 (2003).

    Article  Google Scholar 

  29. R. Hiss, S. Hobeika, C. Lynn, and G. Strobl, Macromolecules 32, 4390 (1999).

    Article  CAS  Google Scholar 

  30. S. Hobeika, Y. F. Men, and G. Strobl, Macromolecules 33, 1827 (2000).

    Article  CAS  Google Scholar 

  31. Y. F. Men and G. Strobl, J. Macromol. Sci. Part B: Phys. 40, 775 (2001).

    Article  Google Scholar 

  32. G. Coulon, G. Castelein, and C. G’Sell, Polymer 40, 95 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J. Deformation behaviors in isotactic polypropylene during rolling. Polym. Sci. Ser. A 57, 296–303 (2015). https://doi.org/10.1134/S0965545X15030050

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15030050

Keywords

Navigation