Skip to main content
Log in

Review: The thermal expansion of composites based on polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the past 25 years, several approaches have been made to the theoretical study of thermal expansion of composites. These approaches range from the empirical, to sophisticated analyses based on applied mechanics. The alternatives are discussed in the following paper, after which the available experimental data are examined in the light of current theory. The approach of Kerner and similar workers shows reasonable success for those systems where the dispersed particles can be treated as spheres, but this case is of limited technological interest. On the other hand, the equation due to Turner most closely represents those systems in which the fillers are fibrous or plate-like in nature. Apart from particle shape, it appears that any general theory must take into account a number of physicochemical variables which have hitherto been omitted.

Attention is drawn to the possible relationship which exists between bulk modulus or Young's modulus, and thermal expansion. This has been pointed out earlier by Barker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Loewenstein. in “Composite Materials”. Ed. L. Holliday (Elsevier, Amsterdam, 1966) p. 156 et seq.

    Google Scholar 

  2. C. W. Van Der Wal, H. W. Bree, and F. R. Schwarze, J. Appl. Polymer Sci. 9 (1965) 2143.

    Google Scholar 

  3. E. H. Kerner, Proc. Phys. Soc. B69 (1956) 808.

    Google Scholar 

  4. G. Arthur and J. A. Coulson, J. Nuclear Matls. 13 (1964) 242.

    Google Scholar 

  5. T. T. Wang and T. K. Kwei, J. Polymer Sci. A2 7 (1969) 889.

    Google Scholar 

  6. Z. Hashin, J. Appl. Mech. 29 (1962) 943.

    Google Scholar 

  7. R. R. Tummala and A. L. Friedberg, J. Appl. Phys. 41 (1970) 5104.

    Google Scholar 

  8. J. P. Thomas, General Dynamics Corporation, Fort Worth Rep. No. FGT 2713 of 22 December 1960.

  9. P. S. Turner, J. Res. Nat. Bur. Stand. 37 (1946) 239.

    Google Scholar 

  10. W. D. Kingery, J. Amer. Ceram. Soc. 40 (1957) 351.

    Google Scholar 

  11. J. L. Cribb, Nature 220 (1968) 576.

    Google Scholar 

  12. D. W. Hobbs, ibid 222 (1969) 849.

    Google Scholar 

  13. R. Hill, Proc. Phys. Soc. A65, (1952) 349, see also Z. Hashin, Appl. Mech. Rev. 17 January 1964.

    Google Scholar 

  14. A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, “Handbook of Thermophysical Properties of Solid Materials” (Pergamon Press, Oxford).

  15. K. Wilmes, Kunstoffe 58 (1968) 9.

    Google Scholar 

  16. L. Holliday and R. Caroll, unpublished data.

  17. R. E. Barker Jun, J. Apppl. Phys. 34 (1963) 107.

    Google Scholar 

  18. Idem, ibid 38 (1967) 4234.

    Google Scholar 

  19. J. N. Plendl and P. J. Gielisse, Phys. Rev. 125 (1962) 828.

    Google Scholar 

  20. J. N. Plendl, S. S. Mitra, and P. J. Gielisse, Phys. Stat. Sol. 12 (1965) 367.

    Google Scholar 

  21. L. Holliday andW. A. Holmes-walker, J. Appl. Polymer Sci. 16 (1972) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holliday, L., Robinson, J. Review: The thermal expansion of composites based on polymers. J Mater Sci 8, 301–311 (1973). https://doi.org/10.1007/BF00550148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550148

Keywords

Navigation