Skip to main content
Log in

Analysis of the microstructure obtained by using unidirectional solidification, tungsten inert gas weld and laser surface melt traversing techniques in Al-Mn alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A major challenge to solidification theory over nearly three decades has been the understanding, prediction and control of rapidly solidified microstructures. The present paper reports results of systematic and controlled conditions of rapid solidification in Al-Mn alloys, which involved measurement of undercooling, solute concentration and cell spacing for solidification front velocities, which were increased progressively, to the level needed for partitionless solidification into a microsegregation-free solid which, in principle, can be crystalline, quasicrystalline or amorphous. Comparison of the measurements with predictions of theoretical modelling give an encouraging level of agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant = π2τ/P2D2

A′ :

constant = k(ab)1/2

B :

constant = mC0c/D[1−pIv(P)]

B′ :

constant

C :

G(Km−1)

C EU :

eutectic composition (at %, wt %)

C 0 :

alloy concentration (at %, wt %)

C *L :

tip concentration in liquid (at %, wt.%)

C *S :

tip concentration in solid (at %, wt %)

D :

diffusion coefficient in liquid (m2s−1)

G :

température gradient (Km−1)

I V(P):

Ivantsov function (P exp(P)E1(P))

P :

solute Péclet number = VSR/2D

R :

tip radius (m)

T EU :

eutectic temperature (K)

T F :

melting point of pure substance (K)

T G :

arrest growth temperature (K)

T L :

liquidus temperature (K)

V ab :

absolute stability velocity (ms−1)

V s :

solidification front velocity (ms−1)

a :

material constant

b :

material constant

k :

distribution coefficient (CS/CL)

k :

constant

m :

liquidus slope (K/at %, K/wt %)

n :

exponent

p :

complementary distribution coefficient (1−k)

τ :

Gibbs-Thomson coefficient (σ/Δsf) (Km)

Δs f :

entropy of fusion per mole (J mol−1K−1)

ΔT 0 :

liquidus-solidus range at C0(TS−TL) (K)

Λ 1 :

cell spacing (m)

σ :

solid/liquid interface energy

π :

3.1416

ξc :

constant = 1−(2k/[1+(2π/P)2]1/2−1+2k)

References

  1. W. J. Boettinger, S. R. Coriel and R. F. Sekerka, Mater. Sci. Engng 65 (1984) 27.

    Article  CAS  Google Scholar 

  2. W. Kurz and D. J. Fisher, Acta Metall. 29 (1981) 11.

    Article  CAS  Google Scholar 

  3. V. Laxmanan, ibid. 33 (1985) 1023.

    Article  CAS  Google Scholar 

  4. Idem., ibid. 33 (1985) 1037.

    Article  CAS  Google Scholar 

  5. W. Kurz, B. Giovanola and R. Trivedi, ibid. 34 (1986) 823.

    Article  CAS  Google Scholar 

  6. R. Trivedi and W. Kurz, ibid. 34 (1986) 1663.

    Article  CAS  Google Scholar 

  7. W. J. Boettinger, D. Shechtman, R. J. Schaefer and F. S. Biancaniello, Metall. Trans. 15A (1984) 55.

    Article  CAS  Google Scholar 

  8. J. A. Juarez-Islas and H. Jones, Acta Metall. 35 (1987) 499.

    Article  CAS  Google Scholar 

  9. Idem., Inst. Metals 421 (1988) 492.

    Google Scholar 

  10. J. A. Juarez-Islas, H. Jones and W. Kurz, Mater. Sci. Engng 98 (1988) 201.

    Article  Google Scholar 

  11. H. Esaka and W. Kurz, J. Crystal Growth 69 (1984) 362.

    Article  CAS  Google Scholar 

  12. H. D. Brody and M. C. Flemings, Metal Trans. 12A (1981) 965.

    Google Scholar 

  13. M. Hansen and K. Anderko (eds), “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).

    Google Scholar 

  14. R. J. Schaefer, S. R. Coriell, R. Mehrabian, C. Fenimore and F. S. Biancaniello, in “Rapidly Solidified Amorphous and Crystalline Alloys”, edited by B. H. Kear, B. C. Giessen and M. Cohen, Materials Research Society Symposium Proceedings, Vol. 8 (Elsevier, Amsterdam, 1982) p. 79.

    Google Scholar 

  15. W. W. Mullins, A. J. McAlister, R. J. Schjaefer, L. A. Bendersky, F. S. Biancaniello and D. L. Moffat, Metall. Trans. 18A (1987) 385.

    Google Scholar 

  16. K. A. Jackson and J. D. Hunt, Trans. Met. Soc. AIME 236 (1966) 1129.

    CAS  Google Scholar 

  17. W. Kurz and D. J. Fisher, Int. Met. Rev. 24 (1979) 177.

    Article  CAS  Google Scholar 

  18. W. Kurz, Z. Metallkde. 69 (1978) 433.

    CAS  Google Scholar 

  19. J. D. Hunt, in “Proceedings of the Conference on Solidification and Casting of Metals”, Sheffield, July 1977 (Metals Society, London, 1979) pp. 3–9.

    Google Scholar 

  20. T. Takahashi, A. Kamio and Nguyen An Trung, J. Crystal Growth 24/25 (1974) 477.

    Article  Google Scholar 

  21. M. Sugiyama, T. Umeda and H. Kato, J. Jpn Inst. Light Metals 24 (1974) 263.

    Article  CAS  Google Scholar 

  22. J. A. Juarez-Islas, PhD thesis, Sheffield University (1986).

  23. R. H. Ewing, Phil. Mag. 25 (1972) 779.

    Article  CAS  Google Scholar 

  24. C. J. Smithells and E. A. Brandes (eds), “Metals Reference Book”, 5th Edn (Butterworths, London, 1976).

    Google Scholar 

  25. J. A. Eady et al, J. Aust. Inst. Metals 28 (1975) 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juarez-Islas, J.A. Analysis of the microstructure obtained by using unidirectional solidification, tungsten inert gas weld and laser surface melt traversing techniques in Al-Mn alloys. J Mater Sci 26, 5004–5012 (1991). https://doi.org/10.1007/BF00549884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549884

Keywords

Navigation