Advertisement

Theoretica chimica acta

, Volume 42, Issue 1, pp 47–65 | Cite as

Theoretical study of the electronic structure of diazomethane

I. The dissociation process CH2N2→CH2 + N2 in point group C2v Symmetry
  • Jacques Lievin
  • Georges Verhaegen
Original Investigations

Abstract

Ab initio calculations of the dissociation process CH2N2 → CH2 + N2 are presented. Calculations were made on the ground 1A1 state as well as on the first few excited states (3B1, 1B1, 1A1*) necessary to the description of the dissociation mechanism in point group C2v symmetry. The variation of energy was determined as a function of the parameters RCH-RNN and θHCH at several RCN values. Most results were obtained by using a basis set of Gaussian lobe functions contracted to “double-zeta” accuracy. A few calculations were made with the addition of polarization functions on all centers. The equilibrium geometry of the ground state, determined from coupled quadratic equations in the molecular parameters, is in satisfactory agreement with experimental values. The dissociation paths on the potential energy surfaces were determined. The locus of intersection points of the two 1A1 states is described; the avoided crossing of the two potential surfaces was determined from CI calculations based on an “intermediate” Hamiltonian. The geometric and electronic rearrangements due to dissociation as well as the bonding characteristics of the orbitals are discussed.

The dissociation energy of the molecule (D 0 0 (CH2N2)) is calculated to be 0.91 eV.

Finally, the term energy of the 1A1 state of CH2 is predicted to be 0.49 eV.

Key words

Diazomethane, dissociation of ∼ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g.: Allinger, N. L., Cava, M. P., De Jongh, D. C., Johnson, C. R., Lebel, N. A., Stevens, C. L.: Organic chemistry. New York, N.Y.: Worth Publishers 1971Google Scholar
  2. 2.
    Snyder, L. C., Basch, H.: J. Am. Chem. Soc. 91, 2189 (1969)Google Scholar
  3. 3.
    Hart, B. T.: Aust. J. Chem. 26, 461, 477 (1973)Google Scholar
  4. 4.
    Leroy, G., Sana, M.: Theoret. Chim. Acta (Berl.) 33, 329 (1974)Google Scholar
  5. 5.
    Lievin, J., Verhaegen, G.: to be publishedGoogle Scholar
  6. 6.
    Woodward, R. B., Hoffmann, R.: The conservation of orbital symmetry. Weinheim: Verlag Chemie 1970Google Scholar
  7. 7.
    Chu, S. Y., Siu, A. K. Q., Hayes, E. F.: J. Am. Chem. Soc. 94, 2969 (1972)Google Scholar
  8. 8.
    Herzberg, G.: Spectra of diatomic molecules. Princeton, New Jersey: Van Nostrand 1950Google Scholar
  9. 9.
    Hehre, W. J., Stewart, R. F., Pople, J. A.: J. Chem. Phys. 51, 2657 (1969)Google Scholar
  10. 10.
    Clementi, E.: J. Chem. Phys. 46, 4737 (1967)Google Scholar
  11. 11.
    Burden, F. R., Hart, B. T.: Aust. J. Chem. 26, 1395 (1973)Google Scholar
  12. 12.
    Ditchfield, R., Hehre, W. J., Pople, J. A.: J. Chem. Phys. 54, 724 (1971)Google Scholar
  13. 13.
    Whitten, J. L.: J. Chem. Phys. 44, 359 (1966)Google Scholar
  14. 14.
    Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965)Google Scholar
  15. 15.
    Whitten, J. L.: J. Chem. Phys. 39, 349 (1963)Google Scholar
  16. 16.
    Whitten, J. L.: Hackmeyer, M.: J. Chem. Phys. 51, 5584 (1969)Google Scholar
  17. 17.
    Whitten, J. L.: J. Chem. Phys. 56, 5458 (1972)Google Scholar
  18. 18.
    Basch, H., Robin, M. B., Kuebler, N. A.: J. Chem. Phys. 47, 1201 (1967)Google Scholar
  19. 19.
    Williamson, H.: C.A.C.M. 15, 100 (1972)Google Scholar
  20. 20.
    Liu, H. P. D., Verhaegen, G.: J. Chem. Phys. 53, 735 (1970); Int. J. Quantum Chem. 5, 103 (1971)Google Scholar
  21. 21.
    Mulliken, R. S.: J. Chem. Phys. 23, 1833 (1955)Google Scholar
  22. 22.
    Verhaegen, G., Moser, C. M.: J. Phys. B: Atom. Mol. Phys. 3, 478 (1970)Google Scholar
  23. 23.
    Desclaux, J. P., Moser, C. M., Verhaegen, G.: J. Phys. B: Atom. Molec. Phys. 4, 296 (1971)Google Scholar
  24. 24.
    Moore, C. B., Pimentel, G. C.: J.Chem. Phys. 40, 329, 342 (1964)Google Scholar
  25. 25.
    Cox, A. P., Thomas, L. F., Sheridan, J.: Nature (London) 181, 1000 (1958)Google Scholar
  26. 26.
    Wasserman, E., Hutton, R. S., Kuck, V. J., Jager, W. A.: J. Chem. Phys. 55, 2593 (1971)Google Scholar
  27. 27.
    Herzberg, G., Johns, J. W. C.: J. Chem. Phys. 54, 2276 (1971)Google Scholar
  28. 28.
    Salem, L., Leforestier, C., Segal, G., Wetmore, R.: J. Am. Chem. Soc. 97, 479 (1975)Google Scholar
  29. 29.
    Selected constants. Spectroscopic data relative to diatomic molecule, Rosen, B. Ed. Oxford: Pergamon Press 1970Google Scholar
  30. 30.
    O'Neil, S., Schaeffer III, H. F., Bender, C. F.: J. Chem. Phys. 55, 162 (1971)Google Scholar
  31. 31.
    Laufer, A. H., Okabe, H.: J. Am. Chem. Soc. 93, 4137 (1971)Google Scholar
  32. 32.
    Paulett, G. S., Ettinger, R.: J. Chem. Phys. 39, 825, 3534 (1963)Google Scholar
  33. 33.
    Setser, D. W., Rabinovitch, B. S.: Can. J. Chem. 40, 1425 (1962)Google Scholar
  34. 34.
    Braun, W., Bass, A. M., Pilling, M.: J. Chem. Phys. 52, 5131 (1970)Google Scholar
  35. 35.
    For definition of method see: Hehre, W. J., Ditchfield, R., Radom, R., Pople, J. A.: J. Am. Chem. Soc. 92, 4796 (1970)Google Scholar
  36. 36.
    Hay, P. J., Hunt, W. J., Goddard III, W. A.: Chem. Phys. Letters 13, 30 (1972)Google Scholar
  37. 37.
    Staemmler, V.: Theoret. Chim. Acta (Berl.) 31, 49 (1973)Google Scholar
  38. 38.
    Handy, N. C.: Communication at the Seminar on Computational Methods in Molecular Physics, Strasbourg, September 1975Google Scholar
  39. 39.
    Halberstadt, M. L., McNesby, J. R.: J. Am. Chem. Phys. 89, 4317 (1967); Carr Jr., R. W., Eder, T. W., Toper, M. G.: J. Chem. Phys. 53, 5716 (1970)Google Scholar
  40. 40.
    Frey, H. M.: J. Chem. Soc. Chem. Commun. 1024 (1972); Frey, H. M., Kennedy, G. J.: Chem. Commun. 6, 233 (1975)Google Scholar
  41. 41.
    Harrison, J. F.: Accounts Chem. Res. 7, 378 (1974)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Jacques Lievin
    • 1
  • Georges Verhaegen
    • 1
  1. 1.Laboratoire de Chimie Physique MoléculaireUniversité Libre de Bruxelles, Faculté des SciencesBrusselsBelgium

Personalised recommendations