Skip to main content
Log in

Time-dependent resistivity in carbon fibre sheets

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical properties of sheets of short carbon fibres in resin, glass-fibre and wood-pulp materials have been investigated. For carbon fibre in wood-pulp, a conductor-to-insulator transition was observed at 3 wt % (0.6 vol %) carbon fibre above which conductivity varied linearly with weight fraction. This result is interpreted in terms of a percolation threshold in a system of high aspect ratio. The data agree well with previous measurements on carbon-fibre in polymer composites, and satisfactorily with two-dimensional Monte Carlo calculations. At high concentrations of carbon fibre in all materials, the in-plane resistivity was found to be strongly time-dependent, the fractional change being proportional to Int. A theoretical model is presented which assumes a continuous increase in the number of interconnecting pathways as fibres physically move together under electrostatic attractive forces. Thermal activation over a continous spectrum of energy barriers leads to logarithmic time dependence as observed experimentally. Studies of the effect of external compression support the model for the time dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Bigg and D. E. Stutz, Polym. Compos, 4 (1983) 40.

    Article  CAS  Google Scholar 

  2. M. R. J. Gibbs, J. E. Evetts and J. A. Leake, J. Mater. Sci. 18 (1983) 278.

    Article  CAS  Google Scholar 

  3. M. R. J. Gibbs and J. E. Evetts, Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, Vol. 2, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, 1982) p. 479.

  4. A. T. Cayless, S. R. Hoon, B. K. Tanner, R. W. Chantrell and M. Kilner, J. Magn. Mag. Mater 30 (1983) 303.

    Article  CAS  Google Scholar 

  5. R. W. Chantrell, S. R. Hoon and B. K. Tanner, ibid. 38 (1983) 133.

    Article  CAS  Google Scholar 

  6. G. E. Fish, V. R. V. Ramanan, R. Hasegewa and A. C. Diebold, IEEE Trans. Magn. MAG 19 (1983) 1937.

    Article  Google Scholar 

  7. D. J. Dunlop, J. Geophys. Space Phys. 40 (1974) 439.

    CAS  Google Scholar 

  8. C. N. Guy, J. Phys. F 7 (1977) 1505.

    Article  CAS  Google Scholar 

  9. I. L. Spain, K. J. Volin, H. A. Goldberg and I. L. Kalnin. Solid State Commun. 45 (1983) 817.

    Article  CAS  Google Scholar 

  10. R. Landauer, AIP Conf. Proc. 40 (1978) 2.

    Article  CAS  Google Scholar 

  11. D. A. E. Bruggeman, Ann. Phys. (Leipz.) 24 (1935) 636.

    Article  CAS  Google Scholar 

  12. G. E. Pike and C. H. Seagar, Phys. Rev B 10 (1074) 1421.

  13. C. H. Seagar and G. E. Pike, ibid. B 10 (1974) 1435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Shell (UK) Ltd Research Fellow in Materials Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoon, S.R., Shelton, A. & Tanner, B.K. Time-dependent resistivity in carbon fibre sheets. J Mater Sci 20, 3311–3319 (1985). https://doi.org/10.1007/BF00545200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545200

Keywords

Navigation