Skip to main content
Log in

The effect of particle size distribution on the rheology of an industrial suspension

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The viscosity of a proprietary dental composite material, consisting of suspensions of crushed glass in a polymeric liquid of a 50/50 w/w urethane dimethacrylate and triethylene glycol dimethacrylate mixture has been measured using a tube viscometer. Narrow-sized fine (ultimate particle size of 0.2 μm, which agglomerate to form particles with a mean diameter of 0.05 μm), medium (d 50= 1.7 μm) and coarse (25.5 μm) particle fractions were used as well as bimodal and trimodal mixtures. Total solids concentrations from 17% to 76(77)% by volume were covered. The results were analysed using extensions of the Farris theory for mixtures and reduced to the viscosity functions, h i (ϕ i), for the three monomodal fractions. They were fitted to the Mooney, Krieger-Dougherty or the three-parameter Cheng equation. The effect of particle size distribution on the Krieger-Dougherty parameters is discussed. The viscosity functions summarize the experimental results and allow the viscosities of bimodal and trimodal mixtures not measured to be predicted. The use of the predictions for the formulation of the dental material is discussed. The methodology described can be used in the design of other suspension products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C-H. Cheng and R. A. Richmond Rheol. Acta, 17 (1978) 446–453.

    Google Scholar 

  2. D. C-H. Cheng. Powder. Tech. 37 (1984) 225–273.

    Google Scholar 

  3. Idem., “Flow properties of suspensions of inert spheres“. Res. Rept No. LR 548 (MH) Warren Spring Laboratory, Stevenage 1984.

    Google Scholar 

  4. J. J. Benbow, Lab. Practice, 12 (1963) 533.

    Google Scholar 

  5. D. C-H. Cheng, Proceedings Symposium Physical Properties Liquid and Gases for Plant and Process Design, East Kilbride, 1968. (HMSO, Edinburgh, 1970).

    Google Scholar 

  6. F. N. Cogswell “Polymer Melt Rheology” (George Godwin, London, 1981).

    Google Scholar 

  7. R. J. Farris, Tram. Soc. Rheol., 12 (1968) 281–301.

    Google Scholar 

  8. H. C. Brinkman, J. Chem. Phys., 20 (1952) 571.

    Google Scholar 

  9. R. Roscoe, Brit. J. Appl. Phys., 3 (1952) 267–269.

    Google Scholar 

  10. D. C-H. Cheng, Chemistry and Industry 17 May (1980) 403–406.

  11. M. Mooney, J. Coll. Sci., 6 (1951) 162–170.

    Google Scholar 

  12. I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol. 3 (1959) 137–152.

    Google Scholar 

  13. D. C-H. Cheng, Bull. Br. Soc. Rheol., 27 (1984) 1–8.

    Google Scholar 

  14. D. G., Thomas, J. Coll. Sci., 20 (1965) 267–277.

    Google Scholar 

  15. C. Hendrix, Chem. Tech. August (1980) 488–497.

  16. G. S. G. Beverage and R. S. Schechter, “Optimisation: Theory and Practice” (McGraw-Hill, New York, 1970).

    Google Scholar 

  17. V. Seshadrii and S. P. Sutera, Trans. Soc. Rheol., 14 (1970) 351–371.

    Google Scholar 

  18. F. L. D. Cloete, A. I. Miller and M. Streat, Trans. Instn. Chem. Engrs., 45 (1967) T392–400.

    Google Scholar 

  19. G. Segre and A. Silberberg, J. Fluid Mech., 14 (1962) 115–135.

    Google Scholar 

  20. F. Gauthier, H. L. Goldsmith and S. G. Mason, Trans. Soc. Rheol., 15 (1971) 297–330.

    Google Scholar 

  21. R. L. Whitmore, in “Rheology of Disperse Systems,” edited by C. C. Mill (Pergamon, London 1959) pp. 49–60.

    Google Scholar 

  22. H. W. Thomas, Biorheol., 1 (1962) 41–56.

    Google Scholar 

  23. G. Segre and A. Silberberg, J. Colloid Sci., 18 (1963) 312–317.

    Google Scholar 

  24. S. Iwanami and M. Tachibana, Bull. JSME, 12 (1969) 224–239.

    Google Scholar 

  25. R. Patzold, Rheol. Acta, 19 (1980) 322–344.

    Google Scholar 

  26. H. Goto and H. Kuno, J. Soc. Rheol. Jap., 11 (1983) 45–50.

    Google Scholar 

  27. Idem., J. Rheol., 28 (1984) 197–205.

    Google Scholar 

  28. M. G. Kendall and A. Stuart, “The Advanced Theory of Statistics, Vol. 1 Distribution Theory,” (Griffin and Co, London, 1963) p. 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, D.CH., Kruszewski, A.P., Senior, J.R. et al. The effect of particle size distribution on the rheology of an industrial suspension. J Mater Sci 25, 353–373 (1990). https://doi.org/10.1007/BF00544230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544230

Keywords

Navigation