Skip to main content
Log in

Effect of cold rolling on the mechanical properties of an FeCo-2V alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The embrittlement of an FeCo-2V alloy, which is caused by ordering, has been found to be prevented or reduced by means of cold rolling over about 72% reduction. The specimens annealed after such rolling, in which lattice imperfections are virtually annihilated, do not always show embrittlement even after ordering. A simultaneous increase in strength and elongation, rather than an embrittlement, is brought about by the ordering at an early stage. This rolling effect has been shown not to depend on the following factors: existence of lattice imperfections, formation of textures, and changes in shape of grains. An attempt is made to explain the rolling effect in terms of the LCD zone model, local concentration-disordered zones, combining with an assumption that clusters composed of the composition near Co3V are already formed in the course of the solidification: the clusters are, by the rolling, elongated and aligned along the rolling direction to form a fibrous structure, so that the same function as that in the fibrereinforced materials would be induced by the forming of a ductile fibrous structure, which is produced around the individual elongated clusters as the LCD zones are developed by the ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Pinnel and J. E. Bennett, Met. Trans. 5 (1974) 1273.

    Google Scholar 

  2. K. Kawahara, J. Mater. Sci. 18 (1983) 2047.

    Google Scholar 

  3. D. P. Shashkov, A. Ye. Shinyayev and G. A. Ioffe, Phys. Met. Metallog. 41 (1976) 164.

    Google Scholar 

  4. K. Kawahara, J. Mater. Sci. 18 (1983) 1709.

    Google Scholar 

  5. Idem, ibid. 18 (1983) 3427.

    Google Scholar 

  6. T. Yokoyama, J. Jpn. Inst. Met. 21 (1957) 325.

    Google Scholar 

  7. R. G. Davies and N. S. Stoloff, Trans. Met. Soc. AIME 236 (1966) 1605.

    Google Scholar 

  8. P. Grosbras and J. P. Eymery, Scripta Metall. 7 (1973) 959.

    Google Scholar 

  9. D. W. Clegg and R. A. Buckley, Met. Sci. 7 (1973) 48.

    Google Scholar 

  10. J. P. Eymery, P. Grosbras and P. Moine, Phys. Status Solidi (a) 21 (1974) 517.

    Google Scholar 

  11. Ye. I. Mal'tsev, V. I. Goman'kov, I. M. Puzev, V. A. Makarov and Ye. V. Kozis, Phys. Met. Metallogr. 39(3) (1975) 84.

    Google Scholar 

  12. R. A. Buckley, Met. Sci. 9 (1973) 243.

    Google Scholar 

  13. Y. Tahara, K. Shinohara, H. Kuroki and T. Eguchi, J. Jpn. Inst. Met. 39 (1975) 105.

    Google Scholar 

  14. A. W. Smith and R. D. Rawlings, Phys. Status. Solidi (a) 34 (1976) 117.

    Google Scholar 

  15. Ye. I. Mal'tsev, V. I. Gorman'kov, I. M. Puzey and A. D. Skokov, Phys. Met. Metallogr. 43(5) (1977) 47.

    Google Scholar 

  16. J. F. Dinhut, J. P. Riviere and J. C. Desoyer, Phys. Status Solidi (a) 47 (1978) 469.

    Google Scholar 

  17. J. A. Ashby, H. M. Flower and R. D. Rawlings, ibid. 47 (1978) 407.

    Google Scholar 

  18. R. A. Buckley, Met. Sci. 13 (1979) 67.

    Google Scholar 

  19. J. A. Ashby, H. M. Flower and R. D. Rawlings, ibid. 11 (1977) 91.

    Google Scholar 

  20. M. Rajkovic and R. A. Buckley, ibid. 15 (1981) 21.

    Google Scholar 

  21. C. W. Chen, J. Appl. Phys. 30 (1961) 348S.

    Google Scholar 

  22. N. S. Stoloff and R. G. Davies, Acta Metall 12 (1964) 473.

    Google Scholar 

  23. S. Fong, K. Sadananda and M. J. Marcinkowski, Met. Trans. 5 (1974) 1239.

    Google Scholar 

  24. M. J. Marcinkowski and H. Chessin, Phil. Mag. 10 (1964) 837.

    Google Scholar 

  25. M. J. Marcinkowski and R. M. Fisher, Trans. Met. Soc. AIME 233 (1965) 293.

    Google Scholar 

  26. R. Smoluchowski and R. W. Turner, J. Apol. Phys. 20 (1949) 745.

    Google Scholar 

  27. A. H. Geisler, J. P. Martin, E. Both and J. H. Crede, Tram. Met. Soc. AIME 197 (1953) 813.

    Google Scholar 

  28. R. M. Pinnel, S. Mahajan and J. E. Bennett, Acta Metall 24 (1976) 1095.

    Google Scholar 

  29. D. R. Thornburg, J. Appl. Phys. 40 (1969) 1579.

    Google Scholar 

  30. N. S. Stoloff and I. L. Dillamore, “Ordered Alloys”, eidted by B. H. Kear et al. (Claitoi's Publishing Division, Baton Rouge, 1970).

    Google Scholar 

  31. H. C. Fiedler and A. M. Davis, Met. Trans. 1 (1970) 1036.

    Google Scholar 

  32. L. A. Alekseyev, D. M. Dzhavadov, Yu. D. Tyapkin and R. B. Levi, Phys. Met. Metallogr. 43(6) (1977) 99.

    Google Scholar 

  33. D. M. Dzhavadov and Ya. P. Selisskiy, ibid. 15(4) (1963) 22.

    Google Scholar 

  34. Idem, ibid. 18(5) (1964) 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahara, K. Effect of cold rolling on the mechanical properties of an FeCo-2V alloy. J Mater Sci 18, 3437–3448 (1983). https://doi.org/10.1007/BF00544172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544172

Keywords

Navigation