Skip to main content
Log in

Radial distribution functions of non-crystalline polymers and their application to the structural analysis of PMMA

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of Radial Distribution Functions (RDFs) in the determination of the structure of non-crystalline polymers is briefly reviewed. Particular aspects of the procedure for preparing RDFs from X-ray scattering are discussed in detail; namely the employment of an energy dispersive detector to remove the Compton component of the scattered X-rays and the application of the method of sampled transforms. A RDF is presented for atactic polymethylmethacrylate (PMMA) and its precision and reliability are discussed. It is analysed by comparison with RDFs calculated from computer-generated atom co-ordinates for isolated lengths of PMMA chains in different conformations. Methods are introduced by which the calculated RDFs are smeared to account for random disorder in the real chain and normalized so that, despite the finite range of the model, they can be immediately compared with the difference RDF which is directly obtained by transforming the data. Comparison between experimental and calculated RDFs shows that reasonable agreement is only obtained for a very limited range of conformations corresponding to sequences of backbone bond rotation angles of (10‡, 10‡, −10‡, −10‡) and the bond angles alternately 110‡ and 128‡. The form of the RDF appears very sensitive to important aspects of the molecular structure. The results both confirm and refine an earlier proposal from this laboratory which was based on comparisons between experimental and calculated functions in reciprocal space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wecker, T. Davidson and J. B. Cohen, J. Mater. Sci. 7 (1972) 1249.

    Google Scholar 

  2. G. L. Simard and B. E. Warren, J. Amer. Chem. Soc. 58 (1936) 507.

    Google Scholar 

  3. A. BjØrnhaug, Ø. Ellefsen and B. A. TØnnesen, J. Polymer Sci. 12 (1954) 621.

    Google Scholar 

  4. G. D. Wignall and G. W. Longman, J. Mater. Sci. 8 (1973) 1439.

    Google Scholar 

  5. G. W. Longman, R. P. Sheldon and G. D. Wignall, ibid. 11 (1976) 1339.

    Google Scholar 

  6. M. R. Gupta and G. S. Y. Yeh, J. Macromol. Sci Phys. 15 (1978) 119.

    Google Scholar 

  7. G. W. Longman, G. D. Wignall and R. P. Sheldon, Polymer 17 (1976) 485.

    Google Scholar 

  8. O. Yoda, I. Kuriyama and A. Odajima, J. Appl. Phys. 49 (1978) 5468.

    Google Scholar 

  9. I. Voight-Martin and F. C. Mijlhoff, ibid. 47 (1976) 3942.

    Google Scholar 

  10. Yu. K. Ovchinnikov, G. S. Markova and V. A. Kargin, Polymer Sci. USSR 11 (1969) 369.

    Google Scholar 

  11. G. R. Mitchell and A. H. Windle, J. Appl. Cryst 13 (1980) 135.

    Google Scholar 

  12. R. Lovell, G. R. Mitchell and A. H. Windle, Acta. Cryst. A35 (1979) 598.

    Google Scholar 

  13. G. R. Mitchell, R. Lovell and A. H. Windle, Polymer 21 (1980) 989.

    Google Scholar 

  14. R. Lovell, G. R. Mitchell and A. H. Windle, Faraday Disc. 68 (1980) 46.

    Google Scholar 

  15. R. Lovell and A. H. Windle, Polymer 22 (1981) 175.

    Google Scholar 

  16. G. D. Wignall, R. N. Rothon, G. W. Longman and G. R. Woodward, J. Mater. Sci. 12 (1977) 1039.

    Google Scholar 

  17. M. Dixon, A. C. Wright and P. Hutchinson, Nucl. Instrum. Methods 143 (1977) 379.

    Google Scholar 

  18. M. E. Milberg, J. Appl. Phys. 29 (1958) 64.

    Google Scholar 

  19. International tables for X-ray Crystallography, (Kynoch Press, Birmingham, 1974).

  20. B. E. Warren and R. L. Mozzi, Acta Cryst. 21 (1966) 459.

    Google Scholar 

  21. G. R. Mitchell and R. Lovell, ibid. A37 (1981) 189.

    Google Scholar 

  22. A. J. Leadbetter and A. C. Wright, J. Non-Cryst. Solids 1 (1972) 23.

    Google Scholar 

  23. Idem, ibid. 7 (1972) 141.

    Google Scholar 

  24. J. H. Konnert and J. Karle, Acta Cryst. A29 (1973) 702.

    Google Scholar 

  25. H. P. Klug and L. E. Alexander, “X-ray Diffraction Procedures” (John Wiley and Sons, New York, 1974) Chap. 12.

    Google Scholar 

  26. B. E. Warren and R. L. Mozzi, J. Appl. Cryst. 3 (1970) 59.

    Google Scholar 

  27. G. S. Cargill, ibid. 4 (1971) 277.

    Google Scholar 

  28. A. Bienenstock, J. Chem. Phys. 31 (1959) 570.

    Google Scholar 

  29. J. P. Ryckaert and A. Bellemans, Faraday Disc. 66 (1978) 95.

    Google Scholar 

  30. M. Vacatello, G. Avitabile, P. Corradini and A. Tuzi, J. Chem. Phys. 73 (1980) 548.

    Google Scholar 

  31. P. R. Sundararajan and P. J. Flory, J. Amer. Chem. Soc. 96 (1974) 5025.

    Google Scholar 

  32. B. E. Warren, “X-ray Diffraction” (Addison-Wesley, Reading, Mass., 1969) Chap. 10.

    Google Scholar 

  33. J. Waser and V. Schomaker, Rev. Mod. Phys. 25 (1953) 671.

    Google Scholar 

  34. A. C. Wright, in “Advances in Structure Research by Diffraction Methods”, edited by W. Hoppe and R. Mason (Pergamon Press, Oxford, 1974) p. 1.

    Google Scholar 

  35. A. Guinier and G. Fournet, “Small-angle Scattering of X-rays” (John Wiley and Sons, New York, 1955) Chap. 2.

    Google Scholar 

  36. G. Porod, in “Small-angle X-ray Scattering” edited by H. Brumberger (Gordon and Breach, New York. 1967) p. 1.

    Google Scholar 

  37. R. J. Bell, Nature 218 (1968) 985.

    Google Scholar 

  38. G. R. Mitchell, Acta Cryst. A37 (1981) 488.

    Google Scholar 

  39. F. P. Grigoreva, T. M. Birshtein and Yu. Ya. Gotlib, Polym. Sci. USSR. 9 (1967) 650.

    Google Scholar 

  40. Idem. Ibid. 10 (1968) 396.

    Google Scholar 

  41. J. R. Waring, PhD thesis, Cambridge, (1979).

  42. R. Kaplow, S. L. Strong and B. L. Averbach, Phys. Rev. A 138 (1965) 1336.

    Google Scholar 

  43. A. D'Anjou and F. Sanz, J. Non. Cryst. Solids 28 (1978) 319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waring, J.R., Lovell, R., Mitchell, G.R. et al. Radial distribution functions of non-crystalline polymers and their application to the structural analysis of PMMA. J Mater Sci 17, 1171–1186 (1982). https://doi.org/10.1007/BF00543538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543538

Keywords

Navigation