Skip to main content
Log in

The mechanism of pseudo-intercrystalline brittleness of precipitation-hardened alloys and tempered steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The term pseudo-intercrystalline brittleness is proposed to describe a fracture mechanism which can occur in poly-crystalline alloys which contain a fine dispersion of a second phase. If narrow particle-free zones develop along grain boundaries, separation can occur after large amounts of plastic strain, which is highly localized to the vicinity of grain boundaries. Since the hardened grain interior does not contribute to plastic deformation the total plastic deformation to fracture and fracture toughness remain small. Quantitative models are proposed to interpret the micromechanism of fracture and to describe the grain-size dependence of fracture toughness. The fracture of precipitation hardening aluminum alloys, creep resistant and structural steels are discussed in terms of the models. Finally an interpretation of the mechanism of stress-relief cracking in steel weldments is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. McMahon, in “Grain Boundaries in Engineering Materials”, Proceedings of the 4th Bolton Landing Conference, 1974 edited by J. L. Walters.

  2. K. Welpmann, G. Lütjering and W. Bunk, Aluminium 50 (1974) 263.

    Google Scholar 

  3. I. D. Evensen, N. Ryum and J. D. Embury, Mater, Sci. Eng. 18 (1975) p. 221.

    Google Scholar 

  4. J. S. Santner and M. E. Fine, Met. Trans. 7A (1976) 601.

    Google Scholar 

  5. M. GrÄf and E. Hornbogen, Acta Met. 25 (1977) 883.

    Google Scholar 

  6. E. Hornbogen, Z. Metallkd, 66 (1975) 511.

    Google Scholar 

  7. E. Hornbogen and M. GrÄf, Acta Met. 25 (1977) 877.

    Google Scholar 

  8. R. W. Nichols, Weld. World 7 (1969) 244.

    Google Scholar 

  9. J. D. Murray, Brit. Weld. J. 14 (1967) 447.

    Google Scholar 

  10. L. E. Emmer, C. D. Clauser and J. R. Low, WRC Bulletin 183 (1973).

  11. R. N. Younger and R. G. Baker, Brit. Weld. J. 8 (1961) 579.

    Google Scholar 

  12. D. McKeown, Weld. J. Res. Suppl. 50 (1971) 201s.

    Google Scholar 

  13. U. Bruch and E. Hornbogen, Arch Eisenhüttenwes. 49 (1978) 409.

    Google Scholar 

  14. G. Thomas and J. Nutting, J. Inst. Met. 88 (1959/60) 81.

    Google Scholar 

  15. A. Saulnier, Mem. Sci. Rev. Met. 58 (1961) 615.

    Google Scholar 

  16. H. S. Rosenbaum and D. Turnbull, Acta Met. 7 (1959) 604.

    Google Scholar 

  17. H. S. Rosembaum, D. Turnbull and E. I. Alessandrini. ibid. 7 (1959) 678.

    Google Scholar 

  18. A. Kelly and R. B. Nicholson, “Precipitation Hardening” (Pergamon Press, Oxford 1963) p. 214.

    Google Scholar 

  19. N. Ryum, B. Haegland and T. Lindtviet, Z. Metallkd. 68 (1967) 28.

    Google Scholar 

  20. E. Hornbogen, in “Nucleation” edited by A. C. Zettlemoyer (Marcel Dekker, New York, 1969) p. 309.

    Google Scholar 

  21. M. Raghavan, Met. Trans. 11A (1980) 993.

    Google Scholar 

  22. L. M. Brown and J. D. Embury, in “The Microstructure and Design of Alloys”, the Proceedings of the 3rd International Conference on the Strength of Metals and Alloys, Cambridge, August 1973 Vol. 1, (The Institue of Metals, London, 1973) p. 164.

    Google Scholar 

  23. E. Hornbogen and K. Friedrich, J. Mater. Sci. 15 (1980) 2175.

    Google Scholar 

  24. H. R. Tipler et al., Met. Technol. 2 (1975) 206.

    Google Scholar 

  25. U. Brenner, Ph.D. Thesis University of Bochum 1977.

  26. K. B. Bentley, Brit. Weld. J. 11 (1964) 507.

    Google Scholar 

  27. C. F. Meitzner, Weld. J. Res. Suppl. 48 (1969) 431s.

    Google Scholar 

  28. H. Nakamura, T. Naiki and H. Okabayashi, J. Jap. Weld. Soc. 32 (1963) 125.

    Google Scholar 

  29. K. Detert, R. Banga and W. Bertram, Arch Eisenhüttenwes. 45 (1974) 245.

    Google Scholar 

  30. H. Goretzki and E. De Lamotte, Proceedings of the Workshop held at the Westinghouse Research Laboratory, Brussels, January 1974 (Westinghouse Corp., Brussels, 1974).

    Google Scholar 

  31. H. Kreye, I. Olefjord and J. Löttgers, Arch. Eisenhüttenwes. 48 (1977) 291.

    Google Scholar 

  32. U. Brenner, H. Kreye and H. Baumgardt, ibid. 51 (1980) 393.

    Google Scholar 

  33. A. G. Vinckier, Doc. IIW X-750-74, Budapest 1974.

  34. C. J. McMahon, R. J. Dobbs and D. H. Gentner, Mater. Sci. Eng. 37 (1979) 179.

    Google Scholar 

  35. C. L. Briant and S. K. Banerji, Int. Met. Rev. 23 (1978) 164.

    Google Scholar 

  36. C. A. Hippsley, J. F. Knott and B. C. Edwards, Acta Met. 28 (1980) 869.

    Google Scholar 

  37. C. A. Hippsley, Met. Sci. 15 (1981) 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbogen, E., Kreye, H. The mechanism of pseudo-intercrystalline brittleness of precipitation-hardened alloys and tempered steels. J Mater Sci 17, 979–988 (1982). https://doi.org/10.1007/BF00543516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543516

Keywords

Navigation