Skip to main content
Log in

Chemical mitigation of the transmutation problem in crystalline nuclear waste radiophases

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Certain deleterious effects on a solid nuclear waste form, though not yet quantitatively defined, could occur due to transmutations of the type 137Cs+137Ba2+ and 90Sr2+90Zr4+ (of half-life, t 1/2, approximately 30 years in both cases). The relevant causes of such possible effects are the valence and size changes. In this paper, a chemical mitigation strategy is explicitly formulated: if the transmuting species can be incorporated in a multiple-cation host, in which one of the inert cations is a variable-valence transition metal, the valence-change aspect of transmutation can be mitigated by a complementary valence change of the transition metal ion. A generalized scheme is:

$${\text{Cs}}^{\text{ + }} R^{z + } {\text{O}}_{{\text{(}}z + 1{\text{)/2}}} \mathop \to \limits^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{\beta } ^ - } {\text{Ba}}^{{\text{2 + }}} R^{(z - 1) + } {\text{O}}_{{\text{(z + 1)/2'}}} $$

where R is a transition metal. The present work involved chemically simulating the transmutation and then attempting to find a Cs- or Sr-bearing single-phase host which would remain single-phase after the transmutation had occurred. Of several structures investigated, perovskite appears to be promising as the A-site can accommodate the approximately 20% size change which occurs when Cs decays to Ba. Ta and Nb were used as the variable-valence ions in the B-site. The application of the results to unpartitioned and partitioned nuclear wastes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. McCarthy and M. T. Davidson, Bull. Amer. Ceram. Soc. 54 (1975) 782.

    Google Scholar 

  2. R. Roy, J. Amer. Ceram. Soc. 60 (1977) 350.

    Google Scholar 

  3. A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, Nature 278 (1979) 219.

    Google Scholar 

  4. Idem, Geochem. J. 13 (1979) 141.

    Google Scholar 

  5. D. M. Roy and R. Roy, Amer. Mineral. 40 (1955) 147.

    Google Scholar 

  6. R. C. DeVries and R. Roy, J. Amer. Ceram. Soc. 38 (1955) 142.

    Google Scholar 

  7. O. C. Kopp, L. A. Harris, G. W. Clark and H. L. Yakel, Amer. Mineral. 48 (1963) 100.

    Google Scholar 

  8. S. Kume and M. Koizumi, ibid 50 (1965) 589.

    Google Scholar 

  9. G. Langlet, Technical Report Number CEA-R-3853 (University of Paris, France, 1969).

    Google Scholar 

  10. S. A. Gallagher, PhD thesis, The Pennsylvania State University, USA (1979).

    Google Scholar 

  11. A. Reisman and J. Mineo, J. Chem. Phys. 65 (1961) 996.

    Google Scholar 

  12. P. N. Iyer and A. J. Smith, Acta Cryst. B27 (1971) 731.

    Google Scholar 

  13. S. A. Kutolin, A. I. Vulikh, N. A. Druz and A. E. Shammasova, Zh. Neorg. Materialy 2 (1966) 1803.

    Google Scholar 

  14. H. T. Fullam and W. E. Skiens, in “Scientific Basis for Nuclear Waste Management” edited by J. G. Moore (Plenum Press, New York, 1981).

    Google Scholar 

  15. R. R. Kreiser and R. Ward, J. Sol. Stat. Chem. 1 (1970) 368.

    Google Scholar 

  16. D. S. Goldman, G. R. Rossman and W. A. Dollase, Amer. Mineral. 62 (1977) 1144.

    Google Scholar 

  17. D. C. Price, E. R. Vance, G. Smith, A. Edgar and B. L. Dickson, J. Phys. Paris 37 (1976) C6:811.

    Google Scholar 

  18. W. T. Schaller, R. E. Stevens and R. H. Jahns, Amer. Mineral. 47 (1962) 672.

    Google Scholar 

  19. B. E. Scheetz, W. B. White and S. D. Atkinson, Nucl Tech. 56 (1982) 289.

    Google Scholar 

  20. S. Komarneni and B. E. Scheetz, J. Inorg. Nucl. Chem. 43 (1981) 1967.

    Google Scholar 

  21. R. Roy, in “Advances in Nucleation and Crystallization of Glasses” edited by L. L. Hench and S. E. Frieman (American Ceramic Society, Columbus, Ohio, USA 1971) p. 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vance, E.R., Roy, R., Pepin, J.G. et al. Chemical mitigation of the transmutation problem in crystalline nuclear waste radiophases. J Mater Sci 17, 947–952 (1982). https://doi.org/10.1007/BF00543512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543512

Keywords

Navigation