Skip to main content
Log in

Microstructure and annealing behaviour of cold-drawn isotactic polypropylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isotactic polypropylene tensile bars were cold-drawn at room temperature and subsequently annealed for various times at temperatures ranging from 50 to 155° C. The material was examined at room temperature in the as-drawn state at several stages of annealing. SAXS, density and mechanical loss data were obtained. Furthermore, thin films were cast. These films were drawn at −196° C and subsequently examined in the electron microscope at −120° C and at higher annealing temperatures. SAXS results for lower temperature annealing showed increases in the intensity of the small-angle Bragg hump with no change in position. High temperature annealing produced a very large intensity increase. In no case did the density of the material show a large increase. Electron microscopy indicated a microstructureless material in the as-drawn state. Annealing at low temperatures produced a fibrous morphology with no observable density modulation in the draw direction. High temperature annealing produced a lamellar microstructure with “normal”, stepwise density modulation. Dynamical mechanical loss curves exhibited no or little β relaxation, except after high temperature annealing. On the basis of these observations, a microstructural model is proposed. The model suggests a very highly defective crystal or paracrystal in the as-drawn state. Low temperature annealing promotes a fibrillar, fringed micellar morphology, in which “crystalline” and “amorphous” regions are not clearly delineated. At higher annealing temperatures, a lamellar, two-phase microstructure is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hess and H. Kiessig, Z. Phys. Chem. A193 (1944) 196

    Google Scholar 

  2. A. Keller and A. O'Connor, Nature 180 (1957) 1289.

    Google Scholar 

  3. W. O. Statton, J. Polymer. Sci. 41 (1959) 143.

    Google Scholar 

  4. R. Bonart and R. Hosemann, Makromol. Chem. 39 (1960) 105.

    Google Scholar 

  5. Idem, Kolloid Z. u. Z. Polymer 186 (1962) 16.

    Google Scholar 

  6. A. Peterlin, J. Polymer Sci. C9 (1965) 61.

    Google Scholar 

  7. A. J. Pennings, ibid. C16 (1967) 1799.

    Google Scholar 

  8. A. Keller and M. J. Machin, J. Macromol. Sci. Phys. 1 (1967) 41.

    Google Scholar 

  9. E. W. Fischer and H. Goddar, J. Polymer Sci. C16 (1969) 4405.

    Google Scholar 

  10. D. Krueger and G. S. Y. Yeh, J. Macromol. Sci. Phys. 6 (1972) 431.

    Google Scholar 

  11. T. Nagasawa and Y. Shinomura, J. Polymer Sci. Phys. 12 (1974) 2291.

    Google Scholar 

  12. J. Petermann and H. Gleiter, Phil. Mag. 31 (1975) 929.

    Google Scholar 

  13. K. H. Illers, Kolloid Z. u. Z. Polymer 231 (1969) 622.

    Google Scholar 

  14. P. J. Flory, J. Chem. Phys. 15 (1947) 397.

    Google Scholar 

  15. A. Peterlin, J. Mater. Sci. 6 (1971) 490.

    Google Scholar 

  16. J. H. Southern and R. S. Porter, J. Macromol. Sci. B4 (1970) 541.

    Google Scholar 

  17. G. Cappacio and I. M. Ward, Polymer 16 (1975) 239.

    Google Scholar 

  18. Z. Mencik, Chem. prumysl. 10 (1967) 377.

    Google Scholar 

  19. P. J. Flory, J. Amer. Chem. Soc. 84 (1962) 2857.

    Google Scholar 

  20. G. Natta, P. Corradini and M. Cesari, Atti. Accad. Nazl. Lincei 21 (1956) 365.

    Google Scholar 

  21. R. L. Miller, Polymer 1 (1960) 135.

    Google Scholar 

  22. A. Keller, Progr. Phys. 31 (1968) 623.

    Google Scholar 

  23. M. Dole, Kolloid Z. u. Z. Polymer 165 (1959) 40.

    Google Scholar 

  24. H. G. Zachmann, Kolloid Z. u. Z. Polymer 165 (1959).

  25. E. W. Fischer and S. Fakirov, J. Mater. Sci. 11 (1976) 11047.

    Google Scholar 

  26. P. H. Hermans and A. Weidinger, Makromol. Chem. 39 (1960) 67.

    Google Scholar 

  27. F. J. Balta Calleja and A. Peterlin, J. Macromol. Sci. Phys. B4 (1970) 519.

    Google Scholar 

  28. G. S. Y. Yeh and P. H. Geil, J. Macromol. Sci. Phys. B1 (1967) 251.

    Google Scholar 

  29. G. S. Y. Yeh and S. L. Lambert, J. Appl Phys. 42 (1971) 4614.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Universität des Saarlandes, 66 Saarbrücken, West Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petermann, J., Schultz, J.M. Microstructure and annealing behaviour of cold-drawn isotactic polypropylene. J Mater Sci 13, 2188–2196 (1978). https://doi.org/10.1007/BF00541673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541673

Keywords

Navigation