Skip to main content
Log in

Carbothermal synthesis of titanium nitride

Part II The reaction sequence

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conversion of TiO2 (both anatase and rutile) to TiN by carbothermal reduction in nitrogen was found to proceed by progressive reduction through a homologous series of Magneli phase oxides TinO2n−1, where n has values of 4–10. The next phase to be observed by X-ray diffraction is Ti3O5, whose formation from the most stable Magneli phase (Ti4O7) is not predicted by the phase diagram, nor by simple thermodynamic calculations. The conversion of triclinic Ti4O7 to monoclinic Ti3O5 appears to be the slow step in the reaction sequence. Formation of TiN then proceeds directly, apparently without the intervention of Ti2O3 or TiO, as usually assumed. A possible cubic oxynitride intermediate was shown by surface analysis to contain no more than 5% oxygen. A small but significant amount of CO is evolved during the formation of Ti4O7, with a larger CO evolution occurring during the nitridation of Ti3O5. Although no direct mass spectroscopic evidence was found for the formation of C3O2, as suggested by previous workers, the present observed weight losses appear to be consistent with this concept. Both the observed reaction sequence and the pattern of CO evolution is consistent with thermodynamic calculations made using a computer program which takes into account the initial nitrogen concentration, and iterates over small temperature intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. White, K. J. D. Mackenzie and J. H. Johnston, J. Mater. Soc. 27 (1992) 4287.

    Article  CAS  Google Scholar 

  2. E. K. Kleepsies and T. A. Hendrie, US Bur. Mines Report 6447 (1964).

  3. T. Ličko, V. Figus and J. Púchyová, J. Eur. Ceram. Soc. 5 (1989) 257.

    Article  Google Scholar 

  4. S. Umezu, Proc. Imp. Acad. (Tokyo) 7 (1931) 353.

    Article  CAS  Google Scholar 

  5. G. D. Bogmolov, V. D. Lyubimov and G. P. Shverkin, J. Appl. Chem. USSR 44 (1971) 1227.

    Google Scholar 

  6. V. D. Lyubimov, T. V. Shestakova, G. P. Shverkin, S. I. Alyamovskii and Yu. G. Zainulin, Inorg. Mater. 13 (1977), 46.

    Google Scholar 

  7. V. D. Lyubimov, G. P. Shverkin, Yu. D. Alfonin, T. A. Timoschuk, V. N. Shalaginov, M. V. Kalacheva and S. I. Alyamovskii, ibid. 49 (1984) 49.

    Google Scholar 

  8. V. D. Lyubimov, G. K. Koiseev and T. A. Timochuk, ibid. 21 (1985) 1158.

    Google Scholar 

  9. G. V. White, K. J. D. Mackenzie, I. W. M. Brown and J. H. Johnston, J. Mater. Sci. 27 (1992) 4300.

    Article  CAS  Google Scholar 

  10. G. Eriksson, Chem. Scripta 8 (1975) 100.

    CAS  Google Scholar 

  11. M. W. Chase (ed.), “JANAF Thermochemical Tables”, 3rd Edn (American Chemical Society, American Institute for Physics, and National Bureau of Standards, 1986).

  12. I. Barin and O. Knacke, “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  13. I. Barin, O. Knacke and O. Kubaschewski, “Supplement to Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1977).

    Book  Google Scholar 

  14. P. G. Wahlbeck and P. W. Gilles, J. Amer. Ceram. Soc. 49 (1966) 180.

    Article  CAS  Google Scholar 

  15. L. A. Bursill, B. G. Hyde, O. Terasaki and D. Watanabe, Phil. Mag. 20 (1969) 347.

    Article  CAS  Google Scholar 

  16. S. Andersson and L. Jahnberg, Arkiv. Kemi 21 (1964) 413.

    Google Scholar 

  17. R. R. Merritt, B. G. Hyde, L. A. Bursill and D. K. Philp, Phil. Trans. R. Soc. Lond. Ser. A 274 (1973) 627.

    Article  CAS  Google Scholar 

  18. M. Marezio and P. D. Dernier, J. Solid State Chem. 3 (1971) 340.

    Article  CAS  Google Scholar 

  19. “DISPOW”, written by A. C. Larson, F. L. Lee, Y. Le-Page and E. J. Gabe, Chemistry Division, Ottawa, Canada (1983).

    Google Scholar 

  20. V. D. Lyubimov, T. V. Shestakova, G. P. Shverkin and S. I. Alyamovskii, Russ. J. Inorg. Chem. 22 (1977) 1620.

    Google Scholar 

  21. M. E. Bowden, personal communication (1989).

  22. L. E. Toth, “Transition Metal Carbides and Nitrides” (Academic Press, New York, 1971).

    Google Scholar 

  23. M. Shimada, T. Suzuku and M. Koizumi, Mater. Lett. 1 (1983) 175.

    Article  CAS  Google Scholar 

  24. C. E. Weeks and F. E. Block, US Bur. Mines Bull. 605 (1963).

  25. R. A. Robie, B. S. Hemingway and J. R. Fisher, US Geol. Surv. Bull. 1452 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, G.V., Mackenzie, K.J.D., Brown, I.W.M. et al. Carbothermal synthesis of titanium nitride. J Mater Sci 27, 4294–4299 (1992). https://doi.org/10.1007/BF00541555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541555

Keywords

Navigation