Skip to main content
Log in

Valency compensation in the Laves system, Ce(Co1−x Ni x )2

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The pseudo-binary systems Ce (Co1−x Ni x )2 (and for comparison, Zr(Co1−x Ni x )2), 0⩽x⩽1.0 have been studied by means of magnetic susceptibility measurements and by room-temperature X-ray diffraction. The experimental data indicate that the electronic state of cerium in the Ce(Co1−x Ni x )2 alloys is variable as a function of composition, and the behaviour is interpreted on the basis of a comparison with the similar system Zr(Co1−x Ni x )2 in which zirconium is regarded as a stable tetravalent element. A limit in the stability of the Laves phase in the Zr(Co1−x Ni x )2 system has been found at x−0.76 (∼ 51at% Ni); this behaviour is interpreted in terms of the electron concentration reaching a maximum value for the stability of the cubic Laves phase structure in these alloys. The Laves phases in the Ce(Co1−x Ni x )2 alloy system form a complete solid solution; this behaviour is interpreted in terms of the stability of the structure being maintained across the whole composition range by changes in the effective valency of the cerium atoms as the cobalt atoms are substituted by nickel, i.e. a “valency compensation” effect. From a comparison with the lattice parameter of the Zr(Co1−x Ni x )2 alloys it was possible to determine an approximate value of 3.4 for the effective valency of cerium in the CeNi2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. J. Buschow, Rep. Prog: Phys. 40 (1977) 1179.

    Google Scholar 

  2. J. M. Robinson, Phys. Rep. 51 (1979) 1.

    Google Scholar 

  3. I. R. Harris, M. Norman and W. E. Gardner, J. Less-Common Met. 29 (1972) 299.

    Google Scholar 

  4. J. M. Pountney, J. M. Winterbottom and I. R. Harris, Conference on Rare Earths and Actinides, Durham, July 1977, Conference Series no. 37 (Institute of Physics, Bristol, 1978) p. 85.

    Google Scholar 

  5. R. C. Mansey, G. V. Raynor and I. R. Harris, J. Less-Common Met. 14 (1968) 337.

    Google Scholar 

  6. I. R. Harris and G. Longworth, ibid. 45 (1976) 63.

    Google Scholar 

  7. G. Longworth and I. R. Harris, ibid. 41 (1975) 175.

    Google Scholar 

  8. S. Taniguchi, R. S. Tebble and D. E. G. Williams, Proc. Roy. Soc. A265 (1962) 502.

    Google Scholar 

  9. N. F. Mott and H. Jones, “The Theory of the Properties of Metals and Alloys” (Dover, New York, 1958).

    Google Scholar 

  10. C. J. Kriessman and H. Callen, Phys. Rev. 94 (1954) 837.

    Google Scholar 

  11. F. Heiniger, E. Bucher and J. Muller, Phys. Kondens. Mater. 5 (1966) 243.

    Google Scholar 

  12. H. Klee and H. Witte, J. Phys. Chem. 202 (1954) 352.

    Google Scholar 

  13. W. E. Wallace and R. S. Craig, in “Phase Stability in Metals and Alloys” edited by P. S. Rudman (McGraw-Hill, New York, 1966).

    Google Scholar 

  14. H. Osterreicher and W. E. Wallace, J. Less-Common Met. 13 (1967) 91.

    Google Scholar 

  15. W. E. Wallace, T. V. Volkmann and R. S. Craig, J. Phys. Chem. Solids 31 (1970) 2185.

    Google Scholar 

  16. B. Leon and W. E. Wallace, J. Less-Common Met. 22 (1970) 1.

    Google Scholar 

  17. I. Shidlovsky and W. E. Wallace, J. Solid State Chemistry 2 (1970) 193.

    Google Scholar 

  18. D. I. Bardos, K. P. Gupta and P. A. Beck, Trans. AIME 221 (1961) 1087.

    Google Scholar 

  19. L. Bsenko, J. Less-Common Met. 63 (1979) 171.

    Google Scholar 

  20. J. R. Cooper, C. Rizzute and G. Olase, Conference on Rare Earths and Actinides, Durham, 1971 (Institute of Physics, Bristol) p. 183.

    Google Scholar 

  21. T. F. Smith and I. R. Harris, J. Phys. Chem. Solids 28 (1967) 1846.

    Google Scholar 

  22. B. T. Matthias, Phys. Rev. 97 (1955) 74.

    Google Scholar 

  23. I. R. Harris, J. M. M. da Silva, M. A. Sa and J. M. C. B. Oliveira, to be published.

  24. I. R. Harris and R. C. Mansey, J. Less-Common Met. 13 (1967) 591.

    Google Scholar 

  25. J. D. Speight, I. R. Harris and G. V. Raynor, ibid. 15 (1968) 317.

    Google Scholar 

  26. G. L. Olcese, Solid State Commun. 35 (1980) 87.

    Google Scholar 

  27. B. D. Padalia, Varsha Prabhawalkar, P. D. Prabhawalkar, E. V. Sampathkumaran, L. C. Gupta and R. Vijayaraghavan, J. Phys. C: Solid State Phys. 14 (1981) L93.

    Google Scholar 

  28. G. Krill and J. P. Kappler, ibid. 14 (1981) L515.

    Google Scholar 

  29. B. D. Padalic, Varsha Prabhawalkar, P. D. Prabhawalkar, E. V. Sampathkumaran, L. C. Gupta and R. Vijayaraghavan, ibid. 14 (1981) L519.

    Google Scholar 

  30. G. Krill, J. P. Kappler, A. Meyer, L. Abadli and M. F. Ravet, J. Phys. F: Met. Phys. 11 (1981) 1713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, J.M.D.C.B., Harris, I.R. Valency compensation in the Laves system, Ce(Co1−x Ni x )2 . J Mater Sci 18, 3649–3660 (1983). https://doi.org/10.1007/BF00540737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540737

Keywords

Navigation