Skip to main content

Advertisement

Log in

Effects of alloying chalcopyrite CuTlSe2 with Na on the electronic structure and thermoelectric coefficients: DFT investigation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The optimized structural parameters, electronic structure, and thermoelectric coefficients of the chalcopyrite alloys Cu1–xNaxTlSe2, with x = 0.00, 0.25, and 0.50 were studied through density functional theory calculations. The Wu–Cohen generalized gradient and the Tran–Blaha modified Becke–Johnson approximations have been employed to describe the exchange–correlation potential. Energy band structure analysis reveals that CuTlSe2 is a semi-metal, while Cu0.25Na0.75TlSe2 and Cu0.50Na0.50TlSe2 alloys are semiconductors with gaps of approximately 0.17 eV and 0.35 eV, respectively. The total and partial densities of states were calculated and discussed. Examining the charge density, we point out the formation of the Na–Se ionic bond when Cu is replaced by the Na atom, which is responsible for the metal–semiconductor transition in the Cu1–xNaxTlSe2 alloys. Moreover, variations of the Seebeck coefficient, electrical conductivity, electronic and lattice thermal conductivity, power factor, and figure of merit of the Cu1–xNaxTlSe2 alloys with temperature and chemical potential were explored. The obtained results show that the value of the figure of merit increases when doping CuTlSe2 with sodium to reach 0.46 and 0.87 for p-type Cu0.75Na0.25TlSe2 and n-type Cu0.50Na0.50TlSe2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

No data are associated in the manuscript.

References

  1. H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric. Br. J. Appl. Phys. 5(111), 458 (1954)

    Article  ADS  Google Scholar 

  2. J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J. Zaikina, K. Kovnir, Clathrate thermoelectrics. Mater. Sci. Eng. R. Rep. 108, 1–46 (2016)

    Article  Google Scholar 

  3. M. Rull-Bravo, A. Moure, J.F. Fernández, M. Martín-González, Skutterudites as thermoelectric materials: revisited. RSC Adv. 5, 41653–41667 (2015)

    Article  ADS  Google Scholar 

  4. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Kerber, M. Zehetbauer, S. Puchegger, Multifilled nanocrystalline p-type didymium–Skutterudites with ZT> 1.2. Intermetallics 18(112), 2435–2444 (2010)

    Article  Google Scholar 

  5. S. Kauzlarich, S. Brown, G. Snyderk, Zintl phases for thermoelectric devices. Dalton Trans. 121, 2099–2107 (2007)

    Article  Google Scholar 

  6. A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27(12), 581–587 (2015)

    Article  Google Scholar 

  7. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. U.S.A. 110(133), 13261–13266 (2013)

    Article  ADS  Google Scholar 

  8. P. Carruthers, Theory of thermal conductivity of solids at low temperatures. Rev. Mod. Phys. 33(11), 92–138 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D.E.S. Mohammed, T. Seddik, M. Batouche, O. Merabiha, A. Zanoun, Improvement of electronic and thermoelectric properties of the metallic LaS by sodium substitution: From first-principles calculations. J. Appl. Phys. 123(19), 095106 (2018)

    Article  ADS  Google Scholar 

  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 143, 597–602 (2001)

    Article  ADS  Google Scholar 

  11. J. Ruan, S. Jian, D. Zhang, H. Yao, H. Zhang, S. Zhang, D. Xing, Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2. Phys. Rev. Lett. 116(122), 226801 (2016)

    Article  ADS  Google Scholar 

  12. V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, A. Svane, N.E. Christensen, Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 114, 1223707 (2013)

    Google Scholar 

  13. T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G.J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater. 24(127), 3622–3626 (2012)

    Article  Google Scholar 

  14. R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun. 48(132), 3818–3820 (2012)

    Article  Google Scholar 

  15. D. Berthebaud, O.I. Lebedev, A. Maignan, Thermoelectric properties of n-type cobalt doped chalcopyrite Cu1−xCoxFeS2 and p-type eskebornite CuFeSe2. J. Materiomics 1(11), 68–74 (2015)

    Article  Google Scholar 

  16. J. Simon, G. Guelou, B. Srinivasan, D. Mori, A. Maignan, Exploring the thermoelectric behavior of spark plasma sintered Fe7–xCoxS8 compounds. J. Alloys 819(1152999), 1–10 (2020)

    Google Scholar 

  17. J. Navratil, J. Kašparová, T. Plecháče, L. Beneš, Z. Olmrová-Zmrhalová, V. Kucek, Č Drašar, Thermoelectric and transport properties of n-type palladium-doped chalcopyrite Cu1−xPdxFeS2 compounds. J. Electron. Mater. 48, 1795–1804 (2019)

    Article  ADS  Google Scholar 

  18. Z. Xia, G. Wang, X. Zhou, W. Wen, Substitution defect enhancing thermoelectric properties in CuInTe2. Mater. Res. Bull. 101, 184–189 (2018)

    Article  Google Scholar 

  19. F. Ahmed, N. Tsujii, T. Mori, Thermoelectric properties of CuGa1−xMnxTe2: power factor enhancement by incorporation of magnetic ions. J. Mater. Chem. A 5(116), 7545–7554 (2017)

    Article  Google Scholar 

  20. P. Poudeu, J. D’Angelo, A. Downey, J. Short, T. Hogan, M. Kanatzidis, High thermoelectric figure of merit and nanostructuring in bulk p-type Na1–xPbmSbyTem+2. Angew. Chem. 45(123), 3835–3839 (2006)

    Article  Google Scholar 

  21. M. Moutassem, T. Seddik, D. Mohammed, M. Batouche, H. Khachai, R. Khenata, R. Ahmed, V. Srivastava, A. Bouhemadou, A. Kushwaha, S.B. Omran, Metal to semiconductor transition and figure of merit enhancement of Li2CuAs compound by Na substitution. Bull. Mater. Sci. 45(13), 1–10 (2022)

    Google Scholar 

  22. Y.J. Dong, Y.L. Gao, Density function theory of elastic and thermal properties for CuTlSe2 crystal. Chalcogenide Lett. 13(110), 515–520 (2016)

    Google Scholar 

  23. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(13B), B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(14A), A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Blaha, K. Schwar, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Vienna, 2001)

    Google Scholar 

  26. Z. Wu, R. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 72(123), 235116–235122 (2006)

    Article  ADS  Google Scholar 

  27. F. Tran, P. Blaha, Band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(122), 226401–226405 (2009)

    Article  ADS  Google Scholar 

  28. J. Camargo-Martínez, R. Baquero, Performance of the modified Becke–Johnson potential for semiconductors. Phys. Rev. B 86(119), 195106–195113 (2012)

    Article  ADS  Google Scholar 

  29. D. Koller, F. Tran, P. Blaha, Improving the modified Becke–Johnson exchange potential. Phys. Rev. B 85(115), 155109 (2012)

    Article  ADS  Google Scholar 

  30. G. Madsen, D. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(11), 67–71 (2006)

    Article  ADS  MATH  Google Scholar 

  31. F. Birch, Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57(12), 227–286 (1952)

    Article  ADS  Google Scholar 

  32. D. Singh, Electronic transport in old and new thermoelectric materials. Sci. Adv. Mater. 3(14), 561–570 (2011)

    Article  Google Scholar 

  33. V. Kumar, B. Sastry, Heat of formation of ternary chalcopyrite semiconductors. J. Phys. Chem. Solids 66(11), 99–102 (2005)

    Article  ADS  Google Scholar 

  34. A. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17(13–4), 215–221 (1961)

    Article  Google Scholar 

  35. V. Vu, V.T.T. Vi, H.V. Phuc, A.I. Kartamyshev, N.N. Hieu, Oxygenation of Janus group III monochalcogenides: first-principles insights into GaInXO (X=S, Se, Te) monolayers. Phys. Rev. B 104(111), 115410 (2021)

    Article  ADS  Google Scholar 

  36. B. Rezini, T. Seddik, R. Mouacher, T. Vu, M. Batouche, O. Khyzhun, Strain effects on electronic, optical properties and carriers mobility of Cs2SnI6 vacancy-ordered double perovskite: a promising photovoltaic material. Int. J. Quantum Chem. 122(121), e26977 (2022)

    Google Scholar 

  37. E.M. Levin, Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides. Phys. Rev. B 93(124), 245202 (2016)

    Article  ADS  Google Scholar 

  38. G. Slack, The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979)

    Article  Google Scholar 

  39. C. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev. 137(11A), A128–A137 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182(110), 2232–2248 (2011)

    Article  ADS  MATH  Google Scholar 

  41. J. Shockley, W. Bardeen, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80(11), 72–80 (1950)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

Authors T. Seddik, K. Djelid, and M. Batouche acknowledge the support of the Algerian National Research project P.R.F.U under number B00L02UN290120220001. The author Saleem Ayaz Khan is thankful to Computational and Experimental Design of Advanced Materials with New Functionalities (CEDAMNF; Grant Z.02.1.01/0.0/0.0/15_003/0000358) of the Ministry of Education, Youth and Sports (Czech Republic) and GAČR (Project 20-18725S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Seddik or R. Khenata.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djelid, K., Seddik, T., Merabiha, O. et al. Effects of alloying chalcopyrite CuTlSe2 with Na on the electronic structure and thermoelectric coefficients: DFT investigation. Eur. Phys. J. Plus 137, 1347 (2022). https://doi.org/10.1140/epjp/s13360-022-03577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03577-8

Navigation