Skip to main content
Log in

Hydrogen trapping in helium damaged metals: a theoretical approach

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A model which explains the trapping of hydrogen around or near helium bubbles is presented. According to this model, hydrogen atoms are attracted toward the bubbles due to positive stresses created by the very high pressure (350 kbar) existing inside the bubbles. The extreme trapping energy of hydrogen atoms around helium bubbles has been theoretically calculated and found to be 0.71 eV atom−1. It is shown that most of the hydrogen atoms are trapped in a very small volume located very close to the bubble surface. The total hydrogen quantity was found to be in the range of 45–76 atoms per bubble for a wide range of hydrogen atom concentration, C. The good agreement between the theoretical results and data based on many experimental measurements reinforces the assumptions underlying the very basis of the suggested mechanism. The model proposed in this study can lead to better understanding of failure mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Kornelsen, Can. J. Phys. 48 (1970) 2812.

    Article  CAS  Google Scholar 

  2. M. I. Baskes and W. D. Wilson, Phys. Rev. B 27 (1983) 2210.

    Article  CAS  Google Scholar 

  3. M. I. Baskes, R. H. J. Fastenau, P. Penning, L. M. Caspers and A. Van Veen, J. Nucl. Mat. 102 (1981) 235.

    Article  CAS  Google Scholar 

  4. G. J. Thomas, W. A. Swansiger and M. I. Baskes, J. Appl. Phys. 50 (1979) 1942.

    Article  Google Scholar 

  5. G. J. Thomas and R. Bastasz, ibid. 52 (1981) 6426.

    Article  CAS  Google Scholar 

  6. T. Asaoka, G. Lapasett, M. Aucouturier and P. Lacombe, Corrosion 34 (1978) 39.

    Article  CAS  Google Scholar 

  7. M. Aucouturier, G. Lapasett and T. Asaoka, Metallography 11 (1978) 5.

    Article  CAS  Google Scholar 

  8. G. M. Pressouyre and I. M. Bernstein, Metall. Trans. 9A (1978) 1571.

    Article  CAS  Google Scholar 

  9. S. M. Myers, S. T. Picraux and R. E. Stoltz, J. Appl. Phys. 50 (1979) 5710.

    Article  CAS  Google Scholar 

  10. S. M. Myers and W. R. Wampler, J. Nucl. Mat. 111 and 112 (1982) 579.

    Article  Google Scholar 

  11. G. M. Pressouyre, Metall. Trans. 10A (1979) 1571.

    Article  CAS  Google Scholar 

  12. J. P. Hirth, ibid. 11A (1980) 861.

    Article  CAS  Google Scholar 

  13. G. M. Pressouyre, ibid. 14A (1983) 2189.

    Article  CAS  Google Scholar 

  14. Idem, in Proceedings of the 2nd Conference on Environmental Degradation of Engineering Materials, Blacksburg, Virginia, 1981, p. 175.

  15. S. M. Myers, D. M. Follstaedt, F. Besenbacher and J. Bottiger, J. Appl. Phys. 53 (1982) 8734.

    Article  CAS  Google Scholar 

  16. P. B. Johnson and D. J. Mazey, Radd. Eff. 53 (1980) 195.

    Article  CAS  Google Scholar 

  17. W. Jager, R. Manzke, H. Trinkaus, R. Zeller, J. Fink and G. Crecelius, ibid. 78 (1983) 315.

    Google Scholar 

  18. F. Besenbacher, J. Bottiger and S. M. Myers, J. Appl. Phys. 53 (1982) 3547.

    Article  CAS  Google Scholar 

  19. S. E. Donnelly, A. A. Lucas, J. P. Vigneron and J. C. Rife, Radd. Eff. 78 (1983) 377.

    Google Scholar 

  20. D. A. Young, A. K. McMahan and M. Ross, Phys. Rev. B 24 (1981) 5119.

    Article  CAS  Google Scholar 

  21. A. E. Pontau, M. I. Baskes, K. L. Wilson, L. G. Haggmark, J. Bohdansky, B. M. U. Scherzer and J. Roth, J. Nucl. Mater. 111 and 112 (1982) 651.

    Article  Google Scholar 

  22. E. Abramov and D. Eliezer, J. Mater. Sci. Lett. (in press).

  23. R. Hill, in “The Mathematical Theory of Plasticity” (Oxford University Press) p. 97.

  24. J. C. M. Li, R. A. Oriani and L. S. Darken, J. Phys. Chem. (N.F.) 49 (1966) 271.

    Article  CAS  Google Scholar 

  25. R. A. Oriani, in Proceedings of Conference on Fundamental Aspects of Stress Corrosion Cracking, Ohio State University, NACE 1967, p. 32.

  26. R. A. Oriani, Trans. Metall. Soc. AIME 236 (1966) 1368.

    Google Scholar 

  27. D. T. Peterson and H. M. Herro, Metall. Trans. 14A (1983) 17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov, E., Eliezer, D. Hydrogen trapping in helium damaged metals: a theoretical approach. J Mater Sci 27, 2595–2598 (1992). https://doi.org/10.1007/BF00540674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540674

Keywords

Navigation