Skip to main content
Log in

Mechanics of strength-degrading contact flaws in silicon

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The micromechanics of indentation-induced flaws in monocrystalline silicon have been studied in relation to strength determination. In the first part, the evolution of the deformation-fracture pattern during contact with a Vickers pyramid is described. Emphasis is thereby placed on the vital role of the residual component of the elastic-plastic contact field in driving the cracks. In the second part, the response of the cracks in subsequent strength testing is followed. A precursor stage of stable growth is observed prior to attaining a failure configuration, consistent with augmentation of the applied tensile (flexural) loading by the residual contact component. No detectable slow crack growth due to environmental influence is found. Nevertheless, silicon is revealed as a material of extreme susceptibility to brittle fracture, with significant strength degradation from contacts on the microscale. The relevance of this brittleness to the mechanical behaviour of silicon components as a function of fabrication and prospective service conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 62 (1979) 347.

    Google Scholar 

  2. C. P. Chen, “Fracture Strength of Silicon Solar Cells” (Jet Propulsion Laboratory Report 79-102, Pasadena, 1979).

  3. A. Misra and I. Finnie, J. Mater. Sci. 14 (1979) 2567.

    Google Scholar 

  4. D. Haneman, W. D. Roots and J. T. P. Grant, J. Appl. Phys. 38 (1967) 2203.

    Google Scholar 

  5. B. P. Lemke and D. Haneman, Phys. Rev. B 17 (1978) 1893.

    Google Scholar 

  6. B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  7. B. R. Lawn and T. R. Wilshaw, ibid. 10 (1975) 1049.

    Google Scholar 

  8. B. R. Lawn and E. R. Fuller, ibid. 10 (1975) 2016.

    Google Scholar 

  9. A. G. Evans and T. R. Wilshaw, Acta. Met. 24 (1976) 939.

    Google Scholar 

  10. D. B. Marshall and B. R. Lawn, J. Mater. Sci. 14 (1979) 2001.

    Google Scholar 

  11. D. B. Marshall, B. R. Lawn and P. Chantikul, ibid. 14 (1979) 2225.

    Google Scholar 

  12. B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.

    Google Scholar 

  13. B. J. Hockey, S. M. Wiederhorn and H. Johnson, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 379.

    Google Scholar 

  14. B. R. Lawn, D. B. Marshall, P. Chantikul and G. R. Anstis, J. Aust. Ceram. Soc. 16 (1980) 4.

    Google Scholar 

  15. V. G. Eremenko and V. I. Nikitenko, Phys. Stat. Sol. (a) 14 (1972) 317.

    Google Scholar 

  16. M. J. Hill and D. J. Rowcliffe, J. Mater. Sci. 9 (1974) 1569.

    Google Scholar 

  17. P. Humble and R. H. J. Hannink, Nature 273 (1978) 37.

    Google Scholar 

  18. B. R. Lawn, B. J. Hockey and S. M. Wiederhorn, J. Mater. Sci. 15 (1980) 1207.

    Google Scholar 

  19. K. E. Puttick and M. A. Shahid, Ind. Diamond Rev. (July, 1977) 208.

  20. A. S. T. Badrick, F. Eldeghaidy, K. E. Puttick and M. A. Shahid, J. Phys. D: Appl. Phys. 10 (1977) 195.

    Google Scholar 

  21. H. Kotake and S. Takasu, J. Mater. Sci. 15 (1980) 895.

    Google Scholar 

  22. B. R. Lawn and A. G. Evans, ibid. 12 (1977) 2195.

    Google Scholar 

  23. J. Lankford and D. L. Davidson, ibid. 14 (1979) 1662.

    Google Scholar 

  24. B. R. Lawn, J. Appl. Phys. 39 (1968) 4828.

    Google Scholar 

  25. R. J. Jaccodine, J. Electrochem. Soc. 110 (1963) 524.

    Google Scholar 

  26. J. J. Gilman, J. Appl. Phys. 31 (1960) 2208.

    Google Scholar 

  27. C. St. John, Phil. Mag. 32 (1975) 1193.

    Google Scholar 

  28. C. P. Chen and M. H. Leipold, Amer. Ceram. Soc. Bull. 59 (1980) 469.

    Google Scholar 

  29. V. R. Howes, Glass Tech. 15 (1974) 148.

    Google Scholar 

  30. J. J. Petrovic, R. A. Dirks, L. A. Jacobson and M. G. Mendiratta, J. Amer. Ceram. Soc. 59 (1976) 177.

    Google Scholar 

  31. B. R. Lawn and D. B. Marshall, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 205.

    Google Scholar 

  32. M. V. Swain, unpublished work (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawn, B.R., Marshall, D.B. & Chantikul, P. Mechanics of strength-degrading contact flaws in silicon. J Mater Sci 16, 1769–1775 (1981). https://doi.org/10.1007/BF00540623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540623

Keywords

Navigation