Skip to main content
Log in

On the generality of discontinuous fatigue crack growth in glassy polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fatigue fracture surface characteristics of five commercially available amorphous polymers [poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(vinyl chloride) (PVC), polystyrene (PS), and polysulphone (PSF)] as well as bulk-polymerized PMMA prepared over a wide range of molecular weights were studied to determine if common mechanisms of fatigue crack propagation prevail among these glassy polymers. In those polymers with viscosity-average molecular weight ¯M v≲2×105, the macroscopic appearance of the fracture surface showed the presence of a highly reflective mirror-like region which formed at low values of stress intensity and high cyclic test frequencies (∼100 Hz). The microscopic appearance of this region revealed that many parallel bands exist oriented perpendicular to the direction of crack growth and that the bands increase in size with ΔK. In all instances, the crack front advanced discontinuously in increments equal to the band width after remaining stationary for hundreds of fatigue cycles. Electron fractographic studies verified the discontinuous nature of crack extension through a craze which developed continuously with the load fluctuations. By equating the band size to the Dugdale plastic zone dimension ahead of the crack, a relatively constant yield strength was inferred which agreed well with reported craze stress values for each material. At higher stress intensity levels in all polymers and all values of ¯M v, another series of parallel bands were observed. These were also oriented perpendicular to the direction of crack growth and likewise increased in size with the range in stress intensity factor, ΔK. Each band corresponded to the incremental advance of the crack during one load cycle, indicating these markings to be classical fatigue striations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Manson and R. W. Hertzberg, CRC Rev. Mac. Sci. 1 (1973) 433.

    Google Scholar 

  2. R. W. Hertzberg, J. A. Manson and M. D. Skibo, Polymer Eng. Sci. 15 (1975) 252.

    Google Scholar 

  3. M. D. Skibo, R. W. Hertzberg and J. A. Manson, J. Mater. Sci. 11 (1976) 479.

    Google Scholar 

  4. R. W. Hertzberg and H. Nordberg, ibid 5 (1970) 521.

    Google Scholar 

  5. R. W. Hertzberg, J. A. Manson and W. L. Wu, ASTM STP 536 (1973) 391.

    Google Scholar 

  6. B. Mukherjee and D. J. Burns, Exp. Mech. 11 (1971) 433.

    Google Scholar 

  7. S. Arad, J. C. Radon and L. E. Culver, Polymer Eng. Sci. 9 (1969) 339.

    Google Scholar 

  8. G. H. Jacoby, ASTM STP 453 (1969) 147.

    Google Scholar 

  9. G. H. Jacoby and C. Cramer, Off. of Nav. Res., A. F. Mat. Lab., Proj. NR064-470 (1967).

  10. M. D. Skibo, unpublished research.

  11. J. P. Elinck, J. C. Bauwens and G. Homes, Int. J. Fract. Mech. 7 (3) (1971) 227.

    Google Scholar 

  12. R. W. Hertzberg and J. A. Manson, J. Mater. Sci. 8 (1973) 1554.

    Google Scholar 

  13. S. Rabinowitz, A. R. Krause and P. Beardmore, ibid 8 (1973) 11.

    Google Scholar 

  14. V. Havlicek and V. Zilvar, J. Macro. Sci. B5 (2) (1971) 317.

    Google Scholar 

  15. A. D. McMaster and D. R. Morrow, Polymer Eng. and Sci. 14 (1974) 801.

    Google Scholar 

  16. G. P. Marshall, L. E. Culver and J. G. Williams, Int. J. Fract. 9 (3) (1973) 295.

    Google Scholar 

  17. B. Rosen, “Fracture Processes in Polymeric Solids” (Interscience, New York, 1964).

    Google Scholar 

  18. J. S. Harris and I. M. Ward, J. Mater. Sci. 8 (1973) 1655.

    Google Scholar 

  19. D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.

    Google Scholar 

  20. N. J. Mills, Eng. Fract. Mech. 6 (1974) 537.

    Google Scholar 

  21. R. D. R. Gales and N. J. Mills, ibid 6 (1974) 93.

    Google Scholar 

  22. H. F. Brinson, Proc. Soc. Exp. Stress Anal. 27 (1970) 93.

    Google Scholar 

  23. M. Creager and P. C. Paris, Int. J. Fract. Mech. 3(4) (1967) 247.

    Google Scholar 

  24. J. Murray and D. Hull, J. Polymer Sci. A-2 8 (1970) 583.

    Google Scholar 

  25. S. Rabinowitz and P. Beardmore, CRC Rev. Mac. Sci. 1 (1972) 1.

    Google Scholar 

  26. J. A. Manson, R. W. Hertzberg, S. L. Kim and M. Skibo, Polymer 16 (1975) 850.

    Google Scholar 

  27. J. F. Fellers and B. F. Kee, J. Appl. Polymer Sci. 18 (1974) 2355.

    Google Scholar 

  28. R. P. Kambour, General Electric Co. Technical Information Series, No. 72CR0285 (1972).

  29. J. P. Berry, J. Polymer Sci. A-2 (1964) 4069.

    Google Scholar 

  30. R. P. Kusy and D. T. Turner, Polymer 17 (1976) 161.

    Google Scholar 

  31. H. H. Kausch, Kunstoffe 65 (8) (1976) 1.

    Google Scholar 

  32. S. C. Kim, M. Skibo, J. A. Manson and R. W. Hertzberg, Polymer Preprints 17 (1) (1976) 144.

    Google Scholar 

  33. S. Wellinghoff and E. Baer, J. Macromol. Sci. Phys. B11 (1976) 367.

    Google Scholar 

  34. S. C. Kim, M. Skibo, J. A. Manson and R. W. Hertzberg, Polymer Preprints 15 (1975) 559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skibo, M.D., Hertzberg, R.W., Manson, J.A. et al. On the generality of discontinuous fatigue crack growth in glassy polymers. J Mater Sci 12, 531–542 (1977). https://doi.org/10.1007/BF00540278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540278

Keywords

Navigation