Skip to main content
Log in

Summary

1. Experiments in rats have shown that the interscapular fat as well as the epididymal fat contains relatively large amounts of serotonin (13 to 16 μg/g protein), and enzymes of serotonin formation and degradation. In addition, interscapular fat contains tyrosine-transaminase activity but no measurable tryptophane-pyrrolase activity nor activity of microsomal enzymes (degradation of hexobarbital).

The serotonin content of adipose tissue increased after blockade of monoamine oxidase (Pargyline, Nialamide) or injection of 5-hydroxytryptophane, and was reduced by treatment with reserpine.

2. Denervation depleted interscapular fat of norepinephrine but did not alter its serotonin and histamine content, while treatment with compound 48/80 markedly reduced the serotonin and histamine content without affecting the norepinephrine concentration of the tissue. These results indicate that in adipose tissue norepinephrine is stored in postganglionic neurons while serotonin as well as histamine is predominantly located in mast cells of this tissue.

The tyramine-induced lipolysis was inhibited by pretreatment with compound 48/80. However, dexamethasone restored the lipolytic effect of tyramine without affecting the decreased level of serotonin and histamine in the tissue.

3. On isolated epididymal fat pads of rats, serotonin (3 × 10−3 M) was ineffective in promoting lipolysis. If, however, monoamine oxidase was blocked by preincubation with pargyline, serotonin concentrations as low as 3 × 10−6 M had a significant lipolytic effect. This action of serotonin was further enhanced by additional blockade of phosphodiesterase by theophylline. Similar to norepinephrine, the lipolytic effect of serotonin was readily inhibited by low concentrations (1 × 10−6 M) of the β-adrenolytic Kö 592, but was not affected by depletion of the norepinephrine content of the fat pads (pretreatment with syrosingopine). 5-Hydroxyindole acetic acid, the end product of the metabolism of serotonin, had no inhibitory effect upon serotonin-induced lipolysis in concentrations up to 10−3 M.

Monoamine oxidase in epididymal fat deaminated serotonin several times more rapidly than dopamine or norepinephrine. This may explain the lack of lipolytic potency of serotonin in tissues with uninhibited monoamine oxidase.

The results indicate that the lipolytic action of serotonin is brought about in similar manner than that of catecholamines, i.e., by stimulation of adenylcyclase and a subsequent formation of cyclic adenosine-3′,5′-monophosphate (3,5-AMP) which in turn activates triglyceride lipase in adipose tissue.

Zusammenfassung

1. Versuche an Ratten haben ergeben, daß das interscapuläre und epididymale Fettgewebe relativ große Mengen Serotonin (13–16 μg/g Protein) sowie Enzyme der Serotoninbildung und des Serotoninabbaus enthält. Im interscapulären Fettgewebe ließ sich außerdem Tyrosin-Transaminase, jedoch keine Tryptophan-Pyrrolase und keine Hexobarbital-abbauenden Mikrosomenenzyme nachweisen.

Durch Injektion von 5-Hydroxytryptophan oder Hemmung der Monoaminoxydase (Pargylin, Nialamid) ließ sich der Serotoningehalt des Fettgewebes erhöhen, durch Injektion von Reserpin erniedrigen.

2. Denervierung verarmte das interscapuläre Fettgewebe an Noradrenalin, nicht aber an Serotonin oder Histamin. Demgegenüber verminderte die Injektion von Compound 48/80 den Serotonin- und Histamingehalt des Fettgewebes, hatte aber keinen Einfluß auf seinen Noradrenalingehalt.

Die indirekte lipolytische Wirkung des Tyramins wurde durch Behandlung mit Compound 48/80 abgeschwächt; sie ließ sich durch Dexamethason, das den Amingehalt des Fettgewebes nicht veränderte, wieder restituieren.

3. Am isolierten epididymalen Fettgewebe der Ratte wirkte Serotonin schon in kleinen Konzentrationen (3 · 10−6 M) lipolytisch, wenn man seine oxydative Desaminierung verhinderte (Pargylin). Durch zusätzliche Hemmung der Phosphodiesterase (Theophyllin) wurde die lipolytische Wirkung des Serotonins noch weiter verstärkt. Unter gleichen Versuchsbedingungen waren Dopamin zwanzigmal und Noradrenalin 400mal wirksamer. Die lipolytische Wirkung von Serotonin in Gegenwart von Pargylin und Theophyllin ließ sich, wie die lipolytische Wirkung von Noradrenalin, durch das β-Sympathicolyticum Kö 592 hemmen. Verarmung des Fettgewebes an Noradrenalin (Syrosingopin) hatte keinen Einfluß auf die lipolytische Wirkung des Serotonins. 5-Hydroxyindolessigsäure, das Abbauprodukt von Serotonin, hemmte die Serotoninwirkung nicht.

Die fehlende lipolytische Wirksamkeit des Serotonins bei intakter Monoaminoxydase könnte darauf beruhen, daß epididymales Fettgewebe Serotonin schneller desaminiert als Dopamin bzw. Noradrenalin.

Die Befunde sprechen dafür, daß Serotonin — ähnlich wie die Sympathicusstoffe — durch Stimulierung der Adenylcyclase (vermehrte Bildung von cyclischem Adenosin-3′,5′-Monophosphat) die Triglyceridlipase des Fettgewebes aktiviert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Andén, N. E.: Distribution of monoamines and dihydroxyphenylalanine decarboxylase activity in the spinal cord. Acta physiol. scand. 64, 197–203 (1965).

    Google Scholar 

  • Bieck, P., K. Stock and E. Westermann: Lipolytic action of serotonin in vitro. Life Sci. 5, 2157–2163 (1966).

    Google Scholar 

  • ——, u. E. Westermann: Serotoninstoffwechsel im braunen Fettgewebe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 22 (1966).

    Google Scholar 

  • Bogdanski, D. F., A. Pletscher, B. B. Brodie, and S. Udenfriend: Identification and assay of serotonin in brain. J. Pharmacol. exp. Ther. 117, 82–88 (1956).

    Google Scholar 

  • ——, and S. Udenfriend: The distribution of serotonin, 5-hydroxytryptophane decarboxylase, and monoamine oxidase in brain. J. Neurochem. 1, 272–278 (1957).

    Google Scholar 

  • Brodie, B. B., J. I. Davies, S. Hynie, G. Krishna, and B. Weiss: Interrelationships of catecholamines with other endocrine systems. Pharmacol. Rev. 18, 273–289 (1966).

    Google Scholar 

  • Butcher, R. W., R. J. Ho, H. C. Meng, and E. W. Sutherland: Adenosine-3′,5′-monophosphate in biological materials. II: The measurement of cyclic 3′,5′-AMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515–4523 (1965).

    Google Scholar 

  • Carlsson, A., T. Magnusson, and E. Rosengren: 5-hydroxytryptamine of the spinal cord normally and after transection. Experientia (Basel) 19, 359 (1963).

    Google Scholar 

  • Chang, C. C.: A sensitive method for spectrophotofluorometric assay of catecholamines. Int. J. Neuropharmacol. 3, 643–649 (1964).

    Google Scholar 

  • Dahlströhm, A., and K. Fuxe: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62, Suppl. 232 (1965).

    Google Scholar 

  • -- -- Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247 (1965).

  • Dole, V. P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 35, 150–154 (1956).

    Google Scholar 

  • Erspamer, W.: Occurrence of indolealkylamines in nature. In: Handbuch exp. Pharmak., Vol. XIX. Berlin, Heidelberg, New York: Springer 1966.

    Google Scholar 

  • Ewald, W., u. H. J. Hübener: Bestimmung der Tyrosin-α-Ketoglutarat-Transaminase. Naturwissenschaften 48, 720 (1961).

    Google Scholar 

  • Falck, B.: Cellular localization of monoamines, pp. 28–44. In: Progress in brain research. Vol. 8: Biogenic amines. H. E. Himwich and W. A. Himwich, Eds. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Folch, J., N. Lees, and G. H. Sloane-Stanley: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 497–509 (1957).

    Google Scholar 

  • Frederickson, D. S., and R. S. Gordon jr.: Transport of fatty acids. Physiol. Rev. 38, 585–630 (1958).

    Google Scholar 

  • Fritz, I. B.: Factors influencing the rates of long-chain fatty acid oxidation and synthesis in mammalian tissues. Physiol. Rev. 41, 52–129 (1961).

    Google Scholar 

  • Garattini, S., and L. Valzelli: Serotonin. Amsterdam: Elsevier 1965.

    Google Scholar 

  • Guillemin, R., G. W. Clayton, H. S. Lipscomb, and J. D. Smith: Fluorometric measurement of rat plasma and adrenal corticosterone concentration; a note on technical details. J. Lab. clin. Med. 53, 830–832 (1959).

    Google Scholar 

  • Hausberger, F. X.: Über die Innervation der Fettorgane. Z. mikr.-anat. Forsch. 36, 231–266 (1934).

    Google Scholar 

  • Heller, A., J. A. Harvey, and R. Y. Moore: A demonstration of a fall in brain serotonin following central nervous system lesions in the rat. Biochem. Pharmacol. 11, 859–866 (1962).

    Google Scholar 

  • Hillarp, N. A., K. Fuxe, and A. Dahlström: Central monoamine neurons. In: Mechanisms of release of biogenic amines, pp. 31–57. U. S. v. Euler, S. Rosell and B. Uvnäs, Eds. New York: Pergamon Press 1966.

    Google Scholar 

  • Holtz, P., u. H. Büchsel: Über die Substratspezifität und -affinität der d-Aminosäurenoxydase und Aminoxydase. Hoppe-Seylers Z. physiol. Chem. 272, 201–211 (1942).

    Google Scholar 

  • ——, u. D. Palm: Brenzkatechinamine und andere sympathicomimetische Amine, Biosynthese und Inaktivierung, Freisetzung und Wirkung. Ergebn. Physiol. 58, 1–580 (1966).

    Google Scholar 

  • Huggett, A. St. G., and D. A. Nixon: Enzymic determination of blood glucose. Biochem. J. 66, 12 P (1957).

  • Kahlson, G., E. Rosengren, and R. Thunberg: Observations on the inhibition of histamine formation. J. Physiol. (Lond.) 169, 467–486 (1963).

    Google Scholar 

  • Knox, W. E.: Two mechanisms which increase in vivo the liver tryptophane pyrrolase activity: specific enzyme adaption and stimulation of the pituitary adrenal system. Brit. J. exp. Path. 32, 462–469 (1951).

    Google Scholar 

  • Levine, R. J., T. L. Sato, and A. Sjoerdsma: Inhibition of histamine synthesis in the rat by α-hydrazin analog of histidine and 4-bromo-3-hydroxy-benzyloxyamine. Biochem. Pharmacol. 14, 139–149 (1965).

    Google Scholar 

  • Lin, E. C. C., and W. E. Knox: Adaption of the rat liver tyrosine-α-ketoglutarate-transaminase. Biochim. biophys. Acta (Amst.) 26, 85–88 (1957).

    Google Scholar 

  • McCamann, R. E.: zit. nach S. Garattini and L. Valzelli: Serotonin, p. 36. Amsterdam: Elsevier 1965.

    Google Scholar 

  • Mead, J. A. R., and K. F. Finger: A single extraction method for the determination of both norepinephrine and serotonin in brain. Biochem. Pharmacol. 6, 52–53 (1961).

    Google Scholar 

  • Paton, W. D. M.: Compound 48/80: a potent histamine liberator. Brit. J. Pharmacol. 6, 499–508 (1951).

    Google Scholar 

  • Pletscher, A., K. F. Gey u. P. Zeller: Monoaminoxydase-Hemmer. Fortschr. Arzneimittel-Forsch. 2, 417–590 (1960).

    Google Scholar 

  • Remmer, H.: Geschlechtsspezifische Unterschiede in der Entgiftung von Evipan und Thiopental bei Ratten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 233, 173–183 (1958).

    Google Scholar 

  • Riley, J. F.: In: Ciba Foundation Symposium on Histamine, pp. 45–46. Boston: Little, Brown and Co. 1956.

    Google Scholar 

  • Rizack, M. A.: Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine-3′, 5′-phosphate. J. biol. Chem. 239, 392–395 (1964).

    Google Scholar 

  • Rosen, F., H. R. Harding, R. J. Milholland, and C. A. Nichol: Glucocorticoids and transaminase activity. VI. Comparison of the adaptive increases of alanine- and tyrosine-α-ketoglutarate-transaminases. J. biol. Chem. 238, 3725–3729 (1963).

    Google Scholar 

  • Sereni, F. F. T. Kenney, and N. Kretchmer: Factors influencing the development of tyrosine-α-ketoglutarate-transaminase activity in rat liver. J. biol. Chem. 234, 609–612 (1959).

    Google Scholar 

  • Shafrir, E., K. E. Sussman, and D. Steinberg: Role of the pituitary and the adrenal in the mobilization of free fatty acids and lipoproteins. J. Lipid Res. 1, 459–465 (1960).

    Google Scholar 

  • Sheldon, H.: The fine structure of the fat cell. In: Fat as a tissue, pp. 41–68. New York: McGraw-Hill Book Company 1964.

    Google Scholar 

  • Shore, P. A., A. Burkhalter, and V. H. Cohn jr.: A method for the fluorometric assay of histamine in tissues. J. Pharmacol. exp. Ther. 127, 182–186 (1959).

    Google Scholar 

  • Sjoerdsma, A., T. E. Smith, T. D. Stevenson, and S. Udenfriend: Metabolism of 5-hydroxytryptamine (serotonin) by monoamine oxidase. Proc. Soc. exp. Biol. (N. Y.) 89, 36–38 (1955).

    Google Scholar 

  • Snyder, S. H., J. Axelrod, and M. Zweig: A sensitive and specific fluorescense assay for tissue serotonin. Biochem. Pharmacol. 14, 831–835 (1965).

    Google Scholar 

  • Stock, K., u. E. Westermann: Untersuchungen über den Mechanismus der narkoseverkürzenden Wirkung von Monoaminoxydase-Hemmstoffen. Naunyn-Schmiedebergs Arch. exp. Path. u. Pharmak. 243, 44–64 (1962).

    Google Scholar 

  • —— —— Concentration of norepinephrine, serotonin, and histamine, and of amine-metabolizing enzymes in mammalian adipose tissue. J. Lipid. Res. 4, 297–304 (1963).

    Google Scholar 

  • —— —— Über die Bedeutung des Noradrenalingehalts im Fettgewebe für die Mobilisierung unveresterter Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 465–487 (1965).

    Google Scholar 

  • —— —— Hemmung der Lipolyse durch α-und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 254, 334–354 (1966).

    Google Scholar 

  • Sutherland, E. W., and T. W. Rall: The relation of adenosine-3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12, 265–299 (1960).

    Google Scholar 

  • —— —— Fraction and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem. 232, 1077–1091 (1958).

    Google Scholar 

  • Vaughan, M.: Effect of hormones on phosphorylase activity in adipose tissue. J. biol. Chem. 235, 3049–3053 (1960).

    Google Scholar 

  • —— Effect of hormones on fat mobilization. In: Fat as a tissue, pp. 203–214. New York: McGraw-Hill Book Comp. 1964.

    Google Scholar 

  • Vaughan, M., and J. Barchas: Effects of melatonin and related compounds on the release of glycerol from rat adipose tissue in vitro. J. Pharmacol. exp. Ther. 152, 298–303 (1966).

    Google Scholar 

  • —— and D. Steinberg: Glyceride biosynthesis, glyceride breakdown and glycogen breakdown in adipose tissue. In: Handbook of Physiology, Section 5, Adipose Tissue, pp. 335–348. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

  • Weiner, N., M. Perkins, and R. L. Sidman: Effect of reserpine on noradrenaline content of innervated and denervated brown adipose tissue of the rat. Nature (Lond.) 193, 137–138 (1962).

    Google Scholar 

  • Westermann, E.: Mechanismus und pharmakologische Beeinflussung der endokrinen Lipolyse. 12. Symposium der Deutschen Gesellschaft für Endokrinologie über „Die endokrine Regulation des Fettstoffwechsels“ in Wiesbaden, April 1966. Berlin, Heidelberg, New York: Springer 1967 (im Druck).

    Google Scholar 

  • ——, and P. Bieck: False transmitter substances in mammalian adipose tissue. In: Drugs affecting lipid metabolism. Progr. Biochem. Pharmacol., Vol. 3, pp. 233–247. Basel, New York: Karger 1967.

    Google Scholar 

  • Wirsén, C.: Distribution of adrenergic nerve fibers in brown and white adipose tissue. In: Handbook of Physiology, Section 5, Adipose Tissue, pp. 197–200. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. P. Holtz zum 65. Geburtstag am 6.2. 1967 gewidmet.

Ausgeführt mit Unterstützung der Deutschen Forschungsgemeinschaft (We 272). Über einen Teil der Ergebnisse wurde auf der 28. Tagung der Deutschen Pharmakologischen Gesellschaft (Bieck u. Westermann), und auf dem 2. Internationalen Symposium über „Drugs Affecting Lipid Metabolism“ in Mailand (Westermann et al., 1967) berichtet, sowie in einer kurzen Mitteilung (Bieck et al., 1966).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieck, P., Stock, K. & Westermann, E. Über die Bedeutung des Serotonins im Fettgewebe. Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 256, 218–236 (1967). https://doi.org/10.1007/BF00539617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539617

Navigation