Skip to main content
Log in

Flicker noise of ion-selective membranes and turbulent convection in the depleted layer

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

Flicker noise of electric currents through ion-selective membranes is explained. It is attributed to the depletion of salt on one side of the membrane, which creates a thin layer of high resistance. Joule heating in this depletion layer and the ensuing temperature gradient, as well as the concentration gradient, give rise to buoyant forces which may create a turbulent convection current. The turbulence mixes the depletion layer so that the electric resistance fluctuates, and consequently the current flickers.

Experiments with ion-selective membranes support this conjecture. They show that 1) Noise is coincident with the increase of the electric resistance by the depletion process. 2) When the current density is reduced, it reaches a critical value, below which the convection current changes from turbulent to laminar, and the noise disappears. 3) Noise reduces with temperature, because the expansion coefficient of water decreases with temperature, and its viscosity increases. 4) A non-ionic water-soluble polymer added to the compartment on the side of the depletion layer reduces the noise, by increasing the bulk viscosity of the solution. 5) Noise depends on the membrane's orientation in the gravitational field. 6) The convection-current in the depletion layer can be observed directly, using a laser-beam, by adding latex particles which create optical noise as they drift with the convection current across the beam. The optical noise is observed only coincidently with the current noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Block, M., Kitchener, J. A.: Polarization phenomena in commercial ion-exchange membranes. J. Electrochem. Soc. 113, 947–953 (1966)

    Google Scholar 

  2. Calvin, W. H., Stevens, C. F.: Synaptic noise as a source of variability in the interval between action potentials. Science 155, 842–844 (1967)

    Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Oxford: Clarendon Press 1961

    Google Scholar 

  4. Conti, F., De Felice, L. J., Wanke, E.: Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol. (Lond.), 248, 45–82 (1975)

    Google Scholar 

  5. Conti, F., Wanke, E.: Channel noise in nerve membranes and lipid bilayers. Quart. Rev. Biophys. 8, 451–506 (1975)

    Google Scholar 

  6. Cooke, B. A.: Concentration polarization in electrodialysis — I. The electrometric measurement of interfacial concentration. Electrochim. Acta 3, 307–317 (1961)

    Google Scholar 

  7. De Felice, L. J., Michaelides, J. P. L. M.: Electrical noise from synthetic membranes. J. Mem. Biol. 9, 261–290 (1972)

    Google Scholar 

  8. Derksen, M. E., Verveen, A. A.: Fluctuations of resting neural membrane potential. Science 151, 1388–1389 (1966)

    Google Scholar 

  9. Dorset, D. L., Fishman, H. M.: Excess electrical noise during current flow through porous membranes separating ionic solutions. J. Mem. Biol. 21, 291–309 (1975)

    Google Scholar 

  10. Fishman, H. M.: Relaxation spectra of potassium channel noise from squid axon membranes. Proc. Nat. Acad. Sci. USA 70, 876–879 (1973)

    Google Scholar 

  11. Forgacs, C.: Deviations from the steady state in ion transfer through permselective membranes. Nature 190, 339–340 (1961)

    Google Scholar 

  12. Green, M. E.: Diffusion and 1/f noise. J. Mem. Biol. 28, 181–186 (1976)

    Google Scholar 

  13. Green, M. E., Yafusso, M.: A study of the noise generated during ion transport across membranes. J. Phys. Chem. 72, 4072–4078 (1968); (including erratum, ibid. 73, 1626 (1969)

    Google Scholar 

  14. Helfferich, F.: Ion exchange. New York: McGraw Hill 1962

    Google Scholar 

  15. Hooge, F. N.: Discussion of recent experiments on 1/f noise. Physica 60, 130–144 (1972)

    Google Scholar 

  16. Landau, L. D., Lifshitz, E. M.: Fluid mechanics. London: Pergamon Press 1961

    Google Scholar 

  17. Poussart, D. J. M.: Membrane current noise in lobster axon under voltage clamp. Biophys. J. 11, 211–234 (1971)

    Google Scholar 

  18. Siebenga, E., Meyer, A. W. A., Verveen, A. A.: Membrane shot-noise in electrically depolarized nodes of ranvier. Pflügers Arch. Ges. Physiol. 341, 87–96 (1973)

    Google Scholar 

  19. Stern, C. S. H., Green, M. E.: Noise generated during sodium and hydrogen ion transport across a cation exchange membranes. J. Phys. Chem. 77, 1567–1572 (1973)

    Google Scholar 

  20. Tchen, C. M.: Repeated-cascade theory of turbulence in an inhomogeneous plasma. Phys. Rev. A 8, 509–514 (1973)

    Google Scholar 

  21. Turner, J. S.: Buoyancy effects in fluids. London: Cambridge University Press 1973

    Google Scholar 

  22. Verveen, A. A., Derksen, H. E.: Fluctuation phenomena in nerve membrane. Proc. IEEE 56, 906–916 (1968)

    Google Scholar 

  23. Verveen, A. A., De Felice, L. J.: Membrane noise. Progr. Biophys. Molec. Biol. 28, 189–265 (1974)

    Google Scholar 

  24. Verveen, A. A., Derksen, M. E., Schick, K. L.: Voltage fluctuations of neural membrane. Nature 216, 588–589 (1967)

    Google Scholar 

  25. Vetter, K. J.: Electrochemical kinetics. New York: Academic Press 1967

    Google Scholar 

  26. Yafusso, M., Green, M. E.: Noise spectra associated with hydrochloric acid transport through some cation-exchange membrane. J. Phys. Chem. 75, 654–662 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. Katzir-Katchalsky Fellow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifson, S., Gavish, B. & Reich, S. Flicker noise of ion-selective membranes and turbulent convection in the depleted layer. Biophys. Struct. Mechanism 4, 53–65 (1978). https://doi.org/10.1007/BF00538840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538840

Key words

Navigation