Intersections of Markov random sets

  • John Hawkes


Stochastic Process Probability Theory Mathematical Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York-London: Academic Press 1968Google Scholar
  2. 2.
    Chung, K.L.: Probabilistic approach to the equilibrium problem in potential theory. Ann. Inst. Fourier 23, 313–322 (1973)Google Scholar
  3. 3.
    Feller, W.: An introduction to probability theory and its applications. Vol. 1, 3rd Edition. New York: Wiley 1966Google Scholar
  4. 4.
    Hawkes, J.: On the potential theory of subordinators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 113–132 (1975)Google Scholar
  5. 5.
    Hawkes, J.: Local properties of some Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, to appear 1977Google Scholar
  6. 6.
    Hoffmann-JØrgensen, J.: Markov sets. Math. Scand. 24, 145–166 (1969)Google Scholar
  7. 7.
    Horowitz, J.: Semilinear Markov processes, subordinators and renewal theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete 24, 167–193 (1972)Google Scholar
  8. 8.
    Kendall, D.G., Harding, E.F.: Stochastic analysis. New York: Wiley 1973Google Scholar
  9. 9.
    Kingman, J.F.C.: Regenerative phenomena. New York: Wiley 1972Google Scholar
  10. 10.
    Kingman, J.F.C.: Markov transition probabilities II; completely monotonic functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 9, 1–9 (1967)Google Scholar
  11. 11.
    Krylov, N.V., Yushkevich, A.A.: Markov random sets. Trans. Moscow Math. Soc. 13, 127–153 (1965)Google Scholar
  12. 12.
    Lamperti, J.: On the coefficients of reciprocal power series. Amer. Math. Monthly 65, 90–94 (1958)Google Scholar
  13. 13.
    Maisonneuve, B.: Ensembles régénératifs, temps locaux et subordinateurs. Lecture Notes in Math. 191. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • John Hawkes
    • 1
  1. 1.Department of StatisticsUniversity College of SwanseaSwanseaUK

Personalised recommendations