Intersections of Markov random sets

  • John Hawkes
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York-London: Academic Press 1968Google Scholar
  2. 2.
    Chung, K.L.: Probabilistic approach to the equilibrium problem in potential theory. Ann. Inst. Fourier 23, 313–322 (1973)Google Scholar
  3. 3.
    Feller, W.: An introduction to probability theory and its applications. Vol. 1, 3rd Edition. New York: Wiley 1966Google Scholar
  4. 4.
    Hawkes, J.: On the potential theory of subordinators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 113–132 (1975)Google Scholar
  5. 5.
    Hawkes, J.: Local properties of some Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, to appear 1977Google Scholar
  6. 6.
    Hoffmann-JØrgensen, J.: Markov sets. Math. Scand. 24, 145–166 (1969)Google Scholar
  7. 7.
    Horowitz, J.: Semilinear Markov processes, subordinators and renewal theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete 24, 167–193 (1972)Google Scholar
  8. 8.
    Kendall, D.G., Harding, E.F.: Stochastic analysis. New York: Wiley 1973Google Scholar
  9. 9.
    Kingman, J.F.C.: Regenerative phenomena. New York: Wiley 1972Google Scholar
  10. 10.
    Kingman, J.F.C.: Markov transition probabilities II; completely monotonic functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 9, 1–9 (1967)Google Scholar
  11. 11.
    Krylov, N.V., Yushkevich, A.A.: Markov random sets. Trans. Moscow Math. Soc. 13, 127–153 (1965)Google Scholar
  12. 12.
    Lamperti, J.: On the coefficients of reciprocal power series. Amer. Math. Monthly 65, 90–94 (1958)Google Scholar
  13. 13.
    Maisonneuve, B.: Ensembles régénératifs, temps locaux et subordinateurs. Lecture Notes in Math. 191. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • John Hawkes
    • 1
  1. 1.Department of StatisticsUniversity College of SwanseaSwanseaUK

Personalised recommendations