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Suppose that {E(n)} is a recurrent event, in the sense of Feller [-3], and that (b 
is the set of renewal epochs. Then 

u, = P [,E(n)] = P In e ~] (1) 

is the corresponding renewal sequence. If ~i i=  1,2 are independent renewal 
epochs, with renewal sequences u~, i=1 ,2 ,  so is (b 1 c~b 2. Also P(n~ob 1 c ~ 2 ) =  
Unl Un .2 Thus the mapping 

(1~1' ~2) + ~1 ("3 ~2 (2) 

is explained by the map 

(uln, Un 2) 1 2 - ,  u . u . .  (3) 

This fact seems to have been first noted by Lamperti  ([,12]). 
The theory of Markov random sets is a generalization of renewal theory to 

continuous time. If ~ i=  1,2 are independent Markov random sets such that 
~ I  ('~ ~2 =#~b almost surely then ~1 c~ ~2 is also a Markov random set and one 
can again ask about the structure of the operation (2). Two problems arise here. 
Firstly in continuous time the occurrences can be so rare that the sets fail to 
intersect. Secondly even when they do intersect the probabilities in (1) are often 
zero so, with this interpretation, (3) is a trivial statement. However u, is also the 
potential kernel density of the increasing random walk associated with {E(n)} 
so if we interpret (3) as a multiplication of potential kernel densities we might 
hope to make some progress by looking at the potential kernel density of the 
subordinator which corresponds to ~. An obvious difficulty here is that the 
potential kernel of this subordinator need not have a density. 

The principal object of this paper is to examine when Markov random sets 
do intersect and the nature of the intersection when it is non empty. In the course 
of this we extend Chung's results on the representation of hitting probabilities 
to some processes whose kernels do not necessarily have densities. We also 
obtain results on the regular behaviour of kernels and how this is related to the 
behaviour of the L6vy measure. 
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The theory of p-functions is a special case of the theory of Markov random 
sets where the probabilities in (1) are always positive. In this situation the structure 
of (2) has been studied in great detail (see [8] and [9]). 

1. Definitions 

For our purposes a subordinator is an increasing process, Xt, whose Laplace 
transform is given by 

E exp ( -  OX,) = exp [ - tg (0)] 

where 

g(O)=60+ S [ 1 - e x p ( - O x ) ] # ( d x ) .  
(0, col 

Here 6 > 0 is the drift of the process and #, the L6vy measure, has 

S rain(x, 1)#(dx) 
(0, col 

finite. Thus # is allowed to have a finite atom at infinity, this atom corresponding 
to an exponential killing of the usual subordinator. The distribution of X~ is 
continuous if and only if # is infinite, an assumption we now make. 

If ~ > 0 the measure U ~, defined for Borel sets A by 
oO 

U~(A)=E ~ exp(-c~t) IA(Xt) dt , 
o 

is finite on bounded sets. Related to U ~ is the potential kernel 

u ~ ( x ,  a ) =  U~(A-x) 

and its dual 

t3 s (y, B) = U s (y - B). 

The Laplace transform of U s satisfies 
09 

exp(_Ot) dUS(t)=[~+g(O)] 1. 
o 

The density of U ", when it exists, is denoted by u" (we write u for u ~ and is called 
the potential kernel density of X. When u s exists we can always find a version 
such that x--,uS(y-x) is ~ excessive. The simplest conditions sufficient for the 
existence of u are 

i) that c~>0, in which case 6u(t) is a p-function and is uniformly continuous 
ii) that if the measure # is absolutely continuous then u exists. 
It is easy to give examples where u does not exist. 
There are various equivalent definitions of a Markov random set (see [6, 7, 

11] and [12]). They are all equivalent to defining it as the range of a subordinator, 
Xt, that is 

= {x: x = X~ for some t > 0}. 
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2. Potential Theory 

A function g: R 1 x R~ ~ R +  is called a kernel density. The capacity of a bounded 
set B is defined by 

C g (B) = sup {m (B): ~ g (x, y) dm (y) < 1 } 
B 

where the supremum of the empty set is zero. A kernel with g ( x , y ) = k ( y - x )  is 
called a difference kernel. If k (z) > 0 if and only if z > 0 we call k one sided. 

A one sided monotone kernel k satisfies the energy principle, namely C k (B)> 0 
if and only if for some non atomic measure m 

~ k ( y - x )  din(y) dm(x )<  ~ .  
B B  

If X t is a subordinator and B a Borel set the last exit time is defined by 

7B=inf{s: t>  s implies Xt(~B }. 

Hunt 's  results on hitting probabilities (see [1], pp. 283-285) show that if U is 
absolutely continuous with density u there is a measure 7: B supported by/~ such 
that 

px (7B > O) = ~ u (y - x) ~z B (dy). 

The disadvantage here is the need to assume the existence of a density u. Chung's 
argument in [-2] can easily be modified to prove: 

(2.1) Theorem. Let  X be a subordinator whose Ldvy measure has infinite mass. 
Then if  A is an open set, and C ~ 

~ P~ {X(7, - ) e  C} dx = ~ (J(y, A) 7rB(dy ) 
A C 

where ~z B is a measure supported by B. 

3. Intersections 

Now we suppose that ~l and ~b 2 are independent Markov random sets and let 
X 1 and X 2 denote the corresponding processes. We suppose that X 1 has a po- 
tential kernel density u 1 and let U 2 be the potential measure of X 2. First we prove 

(3.1) Theorem. The following are equivalent: 

i) ~51 c~ ~2 :~= @ almost surely; 
ii) C"l(q~2)>0 almost surely. 

Proof. This is an immediate consequence of the Hunt  results on hitting prob- 
abilities. 

i 

(3.2) Theorem. I f  ~1 c~ ~2 ~ almost surely then ~ ul (t ) dU2(t ) is finite. Further- 
more if  u 1 is monotone the converse holds, o 
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Proof. Suppose that ~1 c~ ~z #~b almost surely and let I be a closed subinterval 
of (0, oo) of length [II such that ~,  c~ ~2 ('~ I # q~ with positive probability. Let 

(x, y) = ~ Ul ( z -  x) u2 (y, dz), 
I 

T=inf{ t :  X ~ R 2 ~ I } ,  

and 

S=inf{s:  X2~R1 ~I} .  

Now, since x ~ ~ (x, y) is excessive with respect to X~, 

t -+ ~ (x: ,  y) 

is a non negative supermartingale. Thus by the optional sampling theorem 

O(O, y)>=EO(Xtr, y). 

Also 

s -~ e ~ (x~, x~) 

is also a non negative supermartingale so again we have 

~(o, o)>e~(x~, x~). 

(Problems regarding the joint measurability can easily be dealt with.) Now 
1 2 X T = X  s almost surely on (T< oo) so that 

E ~ (X~, X~) = ~ P(X1T ~ dy) {~ u 1 ( z -  y) U 2 (y, dz)} 
I I 

(IXl-y } 
=~P(X~T6dy)~ ~ Ul(Z)dU2(z) �9 

I I 0 

Since this is less than ~ (0, 0) we have ~ u 1 (t) d U 2 (t) < oo. 
0 +  

1 

Now suppose that u~ is monotone and ~u~(t)dU2(O<oo so that, if 
co 0 

a > 0, ~ u 1 (t) d U~ (t) < ~ .  Then if x -> 0 
0 

oo oo 

u 1 ( z -  x) d U~ (z) < ~ u 1 (z) d U~ (z) 
0 0 

so that 

oo 

~ U I ( Z - X )  d U ~ ( Z )  dU~(x )<~ 00 .  
0 0 

Now let m be the image under X 2 of the measure with density ae - ~  on (0, ~).  
Thus 

E I~ u l ( y -x )dm(y )dm(x )<~  
t~  2 • t~  2 
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and 

SS ul (y - x) dm (y) dm (x) < Go almost surely. 
~2 x r 

Since u 1 is a one sided monotone kernel and m is supported by ~2 this implies 
that C "1 (~2) > 0 almost surely. Thus C ~ (~2) > 0 almost surely and, by Theorem 3.1, 
q~l c~ ~b 2 4= ~b almost surely. 

Before we examine the structure of the intersection we need to introduce 
some new concepts. I fX is a topological measure space, @(X) denotes the bounded 
Borel functions on X. 

Definition. Let X and Y be two topological measure spaces and V(x, B) a kernel 
defined for x e X and B c Y. A kernel V(y, A) defined for y e Y and A c X is said 
to be (X, Y) dual to V if 

(f, Vg)=(g, Ff) whenever f e N ( X )  and geN(Y). 

If x ~ R  1 and B c R  2 we define 

W(x, B)-- [U~ (x, .) • C;2 (x, .)] (B) 

and let ffV be the (R1, Rz) dual of W, whenever the latter is defined. If U 1 is ab- 
solutely continuous W exists and a version of W is given by 

W (~_, A)= S u~ (Zl - x) C; (z2 , d x) 
A 

where z =  (z~, z2). Next we let 

C = {f: f continuous with compact support in ( -  0% 0)} 

and 

C + = { f :  f ~ C ,  f > O  and f , 0 } .  

We say that W is regular if whenever f e  C + there is a neighbourhood D s of the 
positive diagonal such that IYVf is continuous and positive on D I. 

(3.3) Theorem. Suppose that cP 1 c~ 4)2 4 r almost surely and let U12 be the potentiaI 
measure of  ~1 c~ 4)2. Then, if [TV exists and is regular and y=(y,  y), VV(~, .) is pro- 
portional to [712(Y, -) the kernel dual to UIE. 

Proof. Suppose that B is an open interval strictly contained in (0, o0) and let 
M = s u p { x : x ~ b l c ~ q ~ 2 c ~ B  }, It follows from Theorem2.1 that if f e C  + and 
L(x, dy)= W ( M ~ d y )  then 

I f (x )  L(x, dy) dx 
ST(x) 01 z (y, dx) = ~zB (d y) 

where ~z B is independent o f f .  
Let 

?~ =inf{s: t>s  implies X~r 2 riB} 

and 

7z=inf{s:  t>s  implies X2r c~B}. 
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Then Xi(Ti- )=M and so [X1 (71-), X2(72-)] =(M, M). The idea of the proof 
is to consider the process (t,s)-+(X~,X 2) to get a second representation for 
~.f(x) L(x, dy)dx in terms of 17r We first introduce some extra notation to cope 
with this new process. Let 2 = (x, x), 

t=(t,s),  X_t=(X~,X2), Y_=(~/t,Y2), P(=")=PI=xP2 y 

and 
[_t,_t + ~) = [t, t+~)  x Es, s+8).  

Now let f e C  + and let g be continuous on D;. Then if e>0  we evaluate the 
limit, as e--* 0, of the integral 

1 
aT 5f(x) {55 E~ Eg CX-_t): ZE(-t,-t + d ]  d_t} dx 

Df 

in two ways. First note that from the Markov property: 

1 
e~ff(x){~.I[ ~. g(_~_,)dnx]at_}ax 

Df ~E(t,t+e] 

=- j  ~f(x) { if Ee [g (~_t)P-X~-(z ~ (0, d ]  d t} dx. (4) 
D f 

Chung's argument shows that the Deft hand side converges to 

f (x) E ~ g (M) dx = ~f(x) { ~ n(x, dfi) g (~)} dx. 
B 

Let z=(z l ,  z2) and ~0~(z)=~ P-~(26(0, el). Then the right hand side of (4) can be 
rewritten as 

(f, WgO~)=(f, WO~g) 
= (~, g, lYVf) 

=(0~, g r162 

In particular the latter tends to a limit as e--+ 0. Now let h be any continuous 
function with compact support contained in D I. Then choose g = h/Wf so that 
g is continuous with compact support. Thus 

lira (~0,, h) exists for each h. 
s ~ 0  

Thus ~(z)dz  converges weakly to the measure 7~ 2 on the diagonal given by 

[. f (x) L(x, dy) dx = 7t2 (dfO" 
(Wf)(Y) 

This measure is independent of f (all the domains D I contain the diagonal). 
Now, if we identify n 2 with a measure on the half line, we have 

dnl Sf(x) U12(Y , dx) V fe  C + . 
dnz (y) =- j ' f (x)  gf(y, dx) 
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drcx is constant on B and hence for If we replace f by a translate o f f  we see that drc2 
some constant C B 

~ f (x) O~2 (y, dx )=  C B ~ f (x) W(y, dx) 

for fE  C + and y~B.  Finally we let B increase to (0, oo) to see that C a is inde- 
pendent of B. It follows that there is a constant c such that 

012(y, . ) : c  r162 .) 

for all y. The theorem is thus proved. 

Corollary 1. I f  u 1 exists and is continuous and monotone one has 

almost surely 4)1 c~ 4)2 4=4~ 

if and only if 

ul (x) d ~9~ (x) is locally finite, 

in which case this measure is proportional to the kernel measure o f  4)1 ~ q~) 2 . 

Proof. Theorem 3.2 gives the first part  of the corollary. The second part  follows 
by observing that under the given hypotheses 

W f =  S f ( x )  u i (z 1 - x) ~-~2 (Z2' dx) 

satisfies the conditions on Theorem 3.3. Hence 

012 (y, A) = ~ ul (y -  x) ~2 (Y, dx) 
A 

is proport ional  to the dual of the kernel of 4)i c~ 4) 2 . The corollary follows. 
The above theorems can similarly be applied to prove the following corollary. 

Corollary 2. I f  u 1 exists and is continuous and bounded then 4) 1 c~ 4)2 :# c~ almost 
surely, and u i (t) dU  2 (t)  is proportional to d U 12 (t), the kernel measure of  4)1 ('~ 4)2" 

I f ,  in addition, U 2 has a bounded continuous density u 2 then so has U12 and u12 
u12(x) Ul(X) u2(x) 

is proportional to u I u 2 and ul2(o) u~(O) u~(O)" 
Note. If u i is bounded ul (t)/ut (0) is a p-function so the corollary shows that the 
product  of two p-functions is again a p-function. 

4. Monotone Kernels 

In Section 3 we needed to suppose that certain kernels were monotone. Here we 
examine conditions which are sufficient to ensure this. Let H(u)=#{(u ,  c~]} be 
the tail of the L6vy measure, so that g(O)=60+O S e x p ( - O u ) H ( u ) d u .  

0 

(4.1) Theorem. I f  H(u) is log convex, that is HH">=(H') 2, then dU(t)  has a 
density u( t )dt  such that u is monotone. 
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Pro@ This is Theorem 2.1 of [4]. 

(4.2) Theorem. I f  u is a non negative, locally integrable, and log convex then u 
is the kernel density of some subordinator. 

Proof. Let ~b = log u then 4 is convex. If M > 1 we let q5 M be the greatest convex 
function less than log M and ~b. Then, if uM = exp (~bM), uM/M is a p-function 
so that 

oo r oo q -1 
S e x p ( - 0  t)uM(t)dt= IOlM +o S exp(-Ou)HM(u ) du I 
0 I_ 0 i 

= rg~ (O)]- 
Clearly 

oo oo 

e x p ( - 0 t )  u(t) dr= lira ~ e x p ( - 0 t )  uM(t) dt 
0 M ~  O 

co 

so that lim ~ e x p ( -  Ou) HM(u) du exists for each 0. Let H(u) du be a weak limit of 
M ~ o o  0 

the measures {HM(u) du} then we have 

e x p ( - 0 t )  u(t) dr= 0 ~ exp ( -0u )  H(u) du 
0 0 

so that u is a kernel density. 
If u is completely monotonic, non negative and locally integrable u is log 

convex and so u is a potential kernel density. The following theorem characterizes 
such kernels. 

(4.3) Theorem. A kernel density u is completely monotonic if and only if the tail of 
the L~vy measure is completely monotonic. 

Proof. In [10] Kingman proves this in the case where 6 = 1. His argument works 
in the case where 6 > 0. It remains to show that one can let 6 tend to zero. As the 
proof that this is possible involves no new ideas we shall omit the details. 

If ui i = 1, 2 are log convex kernels u~ u2 is again log convex and so is a kernel 
if and only if u 1 u 2 is locally integrable. This provides one of the few examples 
where it is analytically obvious when the product of two kernels is again a kernel. 

5. Examples 

We now give some illustrations of the application of these ideas. 

Example 1. A stable subordinator of index ~ has a potential kernel density u~(x) 
proportional to x "-1. Thus us u~ is proportional to x (~+~-a)-j, which is locally 
integrable if and only if e+ /~>  1. Thus the ranges of independent stable sub- 
ordinators intersect if and only if c~+/? > 1, in which case the intersection is 
stochastically equivalent to the range of a stable subordinator of index c~ + / ~ -  1. 
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Example 2. Let Z~=(Xt,  Yt) be a two dimensional brownian motion, where X~ 
and Yt are independent one dimensional brownian motions. Then Z 1 = {t: X~ = 0} 
and Z 2 =  {t: Yt=0} are independent Markov random sets with corresponding 
kernel densities ui(t ) proportional to t -~. Since ul u z is not locally integrable 
Z1 ~Z2=~b almost surely and we arrive at the conclusion that { t :Zt=0  } is 
empty. Thus we have an alternative proof that two dimensional brownian motion 
does not have zeros. 

Theorem 5 of I-5] contains a further application of this type. 
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