Skip to main content
Log in

Proton transfer in and polarizability of hydrogen bonds in proteins. Tyrosine-lysine and glutamic acid-lysine hydrogen bonds — IR investigations

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

The OH ⋯ N ⇌ O ⋯ H+N hydrogen bonds formed between tyrosine and lysine, and between glutamic acid and lysine residues are studied by infrared spectroscopy considering the following systems: (l-lys)n + phenol, copoly (l-lys, l-tyr)n, (l-lys)n + (l-tyr)n and (l-lys)n + (l-glu)n. The phenol-lysine hydrogen bonds are largely symmetrical in the average if the pKa of the protonated lysine is 2.2 units larger than that of the phenols. In the case of the hydrogen bonds between tyrosine and lysine residues in copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n, the weight of the proton limiting structure OH ⋯ N is 80–90%, and that of the polar O ⋯ H+N structure 10–20%. Double minimum proton potentials occur but the proton is preferentially present at the tyrosine residues. In the (l-lys)n + (l-glu)n system, the protons are present at the lysine residues. Thus, these hydrogen bonds have very large dipole moments (about 10 D). With the lysine-phenole hydrogen bonds, hydration shifts the proton transfer equilibrium a little in favour of the polar proton limiting structure O ⋯ H+N. These hydrogen bonds are broken to a large extent, however, when only about 3 water molecules are present per lysine residue. When less water is present, as in the copoly (l-lys, l-tyr)n and (l-lys)n + (l-tyr)n systems, these hydrogen bonds are, however, formed quantitatively. Thus — as discussed in this paper — the tyrosine-lysine hydrogen bonds can participate in proton conducting hydrogen bonded systems — as, for instance, present in bacteriorhodopsin — performing the proton transport through hydrophobic regions of biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blow DM (1976) Acc Chem Res 9: 145–152

    Google Scholar 

  • Breuer MM, Kennerly MG (1971) J Colloid Interface Sci 37: 124–131

    Google Scholar 

  • Brisette C, Sandorfy C (1960) Can J Chem 38: 34–44

    Google Scholar 

  • ChirgadŽe YuN, Ovsepyan AM (1972) Biopolymers 11: 2179–2186

    Google Scholar 

  • ChirgadŽe YuN, Brazhnikov EV, Nevskaya NA (1976) J Mol Biol 102: 781–792

    Google Scholar 

  • Christensen JJ, Hansen LD, Izatt RM (eds) (1976) Handbook of proton ionisation heats. J. Wiley, New York

    Google Scholar 

  • Drahonovski J, Vacek Z (1971) Collect Czech Chem Comm 36: 3431–3440

    Google Scholar 

  • Elliot A (1954) Proc R Soc A221: 104–114

    Google Scholar 

  • Evans JC (1960) Spectrochim Acta 16: 1382–1392

    Google Scholar 

  • HadŽi D, Bratos S (1976) In: Schuster P, Zundel G, Sandorfy C (eds) The hydrogen bond — Recent developments in theory and experiments, vol. II. North Holland, Amsterdam

    Google Scholar 

  • Hayd A, Weidemann EG, Zundel G (1979) J Chem Phys 70: 86–91

    Google Scholar 

  • Hofmann KP, Zundel G (1971) Rev Sci Instrum 42: 1726–1727

    Google Scholar 

  • Huyskens P, Zeegers-Huyskens Th (1964) J Chim Phys 61: 81–86

    Google Scholar 

  • Ikeda S, Kito A, Imae T (1974) J Colloid Interface Sci 48: 256–262

    Google Scholar 

  • Jadzyn J, Małeki J (1972) Acta Phys Pol A41: 599–616

    Google Scholar 

  • Janoschek R, Weidemann EG, Pfeiffer H, Zundel G (1972) J Amer Chem Soc 94: 2387–2396

    Google Scholar 

  • Janoschek R, Weidemann EG, Zundel G (1973) J Chem Soc, Faraday Trans 2 69: 505–520

    Google Scholar 

  • Katchalski E, Sela M (1953) J Am Chem Soc 75: 5284–5289

    Google Scholar 

  • Katchalski E, Shavit N, Eisenberg H (1954) J Polymer Sci 13: 69–84

    Google Scholar 

  • Katchalski E, Sela M, Silmann HI, Berger A (1964) In: Neurath H (ed) The proteins, vol. II. Academic Press, New York, pp 405–602

    Google Scholar 

  • Kristof W, Zundel G (in preparation)

  • Kuhn J (1952) J Am Chem Soc 74: 2492–2499

    Google Scholar 

  • Lindemann R, Zundel G (1977a) Biopolymers 16: 2407–2418

    Google Scholar 

  • Lindemann R, Zundel G (1977b) J Chem Soc, Faraday Trans 2 73: 788–803

    Google Scholar 

  • Lindemann R, Zundel G (1978) Biopolymers 17: 1285–1304

    Google Scholar 

  • Miyazawa T, Blout ER (1961) J Am Chem Soc 83: 712–719

    Google Scholar 

  • Murray J, Gordon N (1935) J Am Chem Soc 57: 110–111

    Google Scholar 

  • Nagasawa M, Holtzer A (1964) J Am Chem Soc 86: 538–543

    Google Scholar 

  • Nouwen R, Huyskens P (1973) J Mol Struct 16: 459–471

    Google Scholar 

  • Oakes J (1976) J Chem Soc, Faraday Trans 1 72: 216–227

    Google Scholar 

  • Ovchinnikov YuA (1979) Eur J Biochem 94: 321–336

    Google Scholar 

  • Ovchinnikov YuA, Abdulaev NG, Feigina MJu, Kiselev AV, Lobanov NA (1979) FEBS Lett 100: 219–224

    Google Scholar 

  • Pawlak Z, Magoński J (1980) J Solution Chem

  • Pfeiffer H, Zundel G, Weidemann EG (1979) J Phys Chem 83: 2544–2551

    Google Scholar 

  • Ratajczak H, Sobczyk L (1969) J Chem Phys 50: 556–557

    Google Scholar 

  • Schellman J, Schellman C (1974) In: Neurath H (ed) The proteins, vol. II. Academic Press, New York, pp 1–137

    Google Scholar 

  • Schreiber M, Koll A, Sobczyk L (1978) Bull Acad Pol Sci Ser Sci Chim 26: 651–654

    Google Scholar 

  • Sobczyk L (1976) In: Schuster P, Zundel G, Sandorfy C (eds) The hydrogen bond — Recent developments in theory and experiments, vol III. North Holland, Amsterdam, pp 936–963

    Google Scholar 

  • Vinogradov SN (1970) Biochim Biophys Acta 214: 6–27

    Google Scholar 

  • Vinogradov SN (1979) Biopolymers 18: 1559–1561

    Google Scholar 

  • Weast RC (1977/78) Handbook of chemistry and physics. 58th ed. CRC-Press, West Palm Beach

    Google Scholar 

  • Zundel G (1969) Hydration and intermolecular interaction. Academic Press, New York (1972): Mir. Moscov)

    Google Scholar 

  • Zundel G (1976) In: Schuster P, Zundel G, Sandorfy C (eds) The hydrogen bond — Recent developments in theory and experiments, vol II. North Holland, Amsterdam, pp 683–766

    Google Scholar 

  • Zundel G (1978) J Mol Struct 45: 55–73

    Google Scholar 

  • Zundel G, Nagyrevi A (1978) J Phys Chem 82: 685–689

    Google Scholar 

  • Zundel G, Weidemann EG (1971) In: Broda E, Locker A, Springer-Lederer H (eds) First European Biophysics Congress, vol 6. Wiener Medizinische Akademie, Wien, pp 43–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristof, W., Zundel, G. Proton transfer in and polarizability of hydrogen bonds in proteins. Tyrosine-lysine and glutamic acid-lysine hydrogen bonds — IR investigations. Biophys. Struct. Mechanism 6, 209–225 (1980). https://doi.org/10.1007/BF00537294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00537294

Key words

Navigation