Sample path convergence of stable markov processes

  • B. Jamison
  • R. Sine


Stochastic Process Probability Theory Markov Process Mathematical Biology Sample Path 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beboutov, M.: Markov chains with a compact state space. Rec. Math. (Mat. Sb.) 10 (52), 213–238 (1942)Google Scholar
  2. 2.
    Breiman, L.: The strong law of large numbers for a class of Markov chains. Ann. Math. Statist. 31, 801–803 (1960)Google Scholar
  3. 3.
    Chung, K. L.: The general theory of Markov processes according to Doeblin. Z. Wahrscheinlich-keitstheorie verw. Gebiete 2, 230–254 (1964)Google Scholar
  4. 4.
    Foguel, S. R.: Ergodic decompositions of a topological space. Israel J. Math. 7, 164–167 (1969)Google Scholar
  5. 5.
    Jamison, B.: Ergodic decomposition induced by certain Markov operators. Trans. Amer. Math. Soc. 117, 451–468 (1965)Google Scholar
  6. 6.
    Lloyd, S. P.: On certain projections in spaces of continuous functions. Pacific J. Math. 13, 171–175 (1963)Google Scholar
  7. 7.
    Loève, M.: Probability Theory. (3rd ed.) Princeton: Van Nostrand 1963Google Scholar
  8. 8.
    Rosenblatt, M.: Equicontinuous Markov operators. Teor. Verojatnost. i Primenen. 9, 205–222 (1964)Google Scholar
  9. 9.
    Sine, R.: Geometric theory of a single Markov operator. Pacific J. Math. 27, 155–166 (1968)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • B. Jamison
    • 1
  • R. Sine
    • 2
  1. 1.Department of MathematicsState University of New York at AlbanyAlbanyUSA
  2. 2.University of Rhode IslandKingstonUSA

Personalised recommendations