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Sample Path Convergence of Stable Markov Processes 

B. Jamison* and R. Sine 

~ 

In recent years several people [5, 6, 8] have sharpened the Krylov-Bogoliubov 
topological decomposition of a compact space relative to a Markov operator 
(due to Bebutov [1]) but at the cost of introducing the quite stringent condition of 
uniform mean stability. One of the authors [9] has shown that a portion of this 
theory holds under the weaker condition that the operator be stable, that is takes 
continuous functions into continuous functions. (For example, this Condition 
guarantees that the union of the ergodic sets is closed.) In this paper we extend the 
results of [5] concerning the sample path behavior of the Markov processes by 
showing that the convergence of the paths to ergodic sets and ergodic kernels 
holds under the condition of stability. We also clarify the relationship between our 
Krylov-Bogoliubov type of ergodic decompositon and Foguel's recent topological 
analogue of Hopf's ergodic decomposition [4]. 

~ 

Let S be a compact Hausdorff space, and C(S) the Banach space of all real- 
valued continuous functions on S. A linear operator T on C(S) is called a Markov 
operator on S if T > 0 and T(1) = 1. We denote by 9J~ the collection of a l l fs  C(S) with 
Tf=f ;  the members of ~ are called invariant. A member # of the dual space 
C*(S) is called a probability i f /~>0 and/~(1)=1. Let 5 ~ be the collection of all 
probabilities # for which T* (/0--#; the members of 5O are also called invariant. 
It is well known that 5 ~ is not empty. An equivalence relation is defined on S x S 
as follows: x ~ y  ifff(x)=f(y) for each fE~Ill. Let ~ be the decomposition of S 
induced by ~.  The member of @ are obviously closed. A member E of ~ is called 
an ergodic set if there is a/~ 6 5r with/~ (E) = 1. Let d ~ be the class of all ergodic sets; 
its union ~ is a non-empty closed set (see [9], Theorem 1.9). If Eeg,  we denote 
by K E the closure of the union of the supports of all #~5O with #(E)= 1. We call K E 
the ergodic kernel (of E). For each x~S let 6x be the unit mass concentrated at x, 
and let Pn(x,.)=(T*)"C~x. A non-empty closed set F is called self-supporting if 
P(x, F ) = I  for all xeF. Ergodic sets need not be self-supporting (see the second 
example on p. 162 of [9]), but their ergodic kernels are (this follows from 
Theorem 1.3 of [9] and the fact that the closure of the union of a collection of 
self-supporting sets is itself self-supporting, a consequence of Theorem 1.1 of [9]). 
For each E ~ g  let 

E 1= (~ {x: x~E, P"(x,E)=I}. 
n = l  
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If Pro(X, {y: P"(y,E)<I})>O, then Pm+"(x,E)<l, and it follows that E 1 is self- 
support ing;  we call E t the self-supporting part of E. Clearly KE~E t c E ,  and the 
inclusions may be proper.  

Theorem 1. For each x ~ S \ Xg there is an f on S with the following properties: 

(i) f ( x ) > 0 ,  
(ii) 0 < f <  1, 

(iii) f is lower semicontinuous, 

(iv) Tf <=f, 
(v) lim T"f = 0 pointwise on S. 

n 

Proof. Fix x e S \ Y , g .  If yeXg, then x ~ y  is false, so there is a gysgJl with 
gy(x)#gy(y); we may assume that  gy (x )=0  and gy(y)= 1. Let Oy= {z: &(z )>  1/2}. 
The sets Oy, yr are an open cover for the compact  set 2;8. Let  Oy,, . . . ,  Oy,, be a 
finite subcover, and g~= g~, i =  1, . . . ,  N. Let  go = gt v ... v gN v 0. Observe that 
go e C(S), go>0 ,  go(X)=0, go>�89 on 2;Sand T g o > g  o. We have T"go T g <  IIgoll, the 
convergence being pointwise on S. Clearly Tg = g, and g is lower semicontinuous. 
Let  f = g - g 0 .  It is clear that, 0 < f <  Ilgoll,f is lower semicontinuous, Tf<=f, and 
T"f$O. We now show that f ( x ) > 0 ;  since go(x)=0,  this amounts  to showing that 
g (x) > 0. We have 

g (x) = lira T" go (x) = lim (l/n) (T + . . .  + T") go (x). 
n /1 

Ty~onov 's  theorem assures us of the existence of a subset {nt} of the positive inte- 
gers for which (1/n,)(T+...+T~gh(x) converges for all heC(S). The map 
h~l im(1/n , ) (T+. . .+T"9 h(x) is a positive linear functional on C(S) which 
sends 1 into 1, and thus corresponds to a probabil i ty measure # on C(S). Since 
the functional clearly assigns the same value to Th as it does to h, # e 5< It follows 
that # (Xd ~ = 1. (This result, well known if S is metrizable, is an easy consequence 
of Theorem 1.11 of I-9] and the Kre in-Milman theorem.) Thus  

g (x)= lim (i/n) (T + . . .  + T") go (x) = lim (l/n,) (T +. . .  + T"9 go (x) 
n 

=5god#>�89 

since go > 1  on s If flft] > 1, replace f by f/l[flL. Now f has properties (i)-(v), and 
the theorem is proved. 

Let f2 be the product  space l-I[= o Si, where S i = S, i=  0, 1, ..., and let ~ be the 
corresponding product  a-field [I~=oNi, where for each i=0 ,  1 . . . .  ,s  the 
a-field of Borel subsets of S. For  each i=0 ,  1, . . . ,  let Xz be the coordinate  function 
on ~;  that  is, Xz(co)= cot, where ~o= (COo, 001 . . . .  ) belongs to f2. It is well known that 
for each probabil i ty measure # on 22 there is a probabil i ty measure P, on {} for 
which Pu(Xo~E)=#(E ) for each EeX and P,(X,+k~EIXo, ...,X,)=pk(Xn, E) 
Pu-almost surely for each n = 0, 1, . . . ,  k = 1, 2, ... and E~Z.  Then Xo, X1, ... is a 
Markov  process; we call it the process with initial distribution #. We denote  the 
corresponding expectat ion opera tor  by E , .  If no misunderstanding can arise, we 
use P and E for P, and E u respectively. Let  A~22, and let xo, xl ,  . . . ,  x . . . . .  be a 
sequence in S. We say that x n converges to A, and write x ,  --+ A, if, any open neigh- 
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borhood V of A, x, ~ V for all but a finite number of values of n, and that x, converges 
to A in densi ty/ f l im (l/n)~,~,=1 lv(Xk)= 1 for any such V We write " x , 6 A  i.o." if 

n 
x , ~ A  for infinitely many values of x, and "x ,  EA ult." if x , ~ A  for all but a finite 
number of values of n. 

Corollary. Let D be the dissipative part of S in the sense of Foguel. Then 
S \ S #  c D. Let K be a compact subset o fS  \ S#.  Then, for any probability measure 
l i onS ,  

Pu(X, e K  i .o.)=0.  

Proof According to Foguel's definition [4], the dissipative set D consists of all 
points x for which there is an f satisfying conditions (i)-(v) of Theorem 1, so the 
first assertion of the corollary is immediate. Let K be a compact subset of S \ Z#. 
We deduce from the theorem via a simple compactness argument the existence of 
functions f l ,  ..., fu satisfying conditions (ii)-(v) of the theorem and for which 

Let 
inf {f/(x): x ~ K } > 6 > 0 ,  

K~= {x: x e K ,  f i(x)> g)}, 

i=1,  . . . ,N .  

i=1 . . . . .  N.  

Fix i. Since Tf/< f ,  {f/(X,), n > 0} is a bounded supermartingale, hence converges. 
But 

E (lim f~ (X,))< l iminf Ef~ (X,) = lim inf E ( T n f  (Xo)) = 0 

by virtue of (v). Since f / = 6  on Ki, this shows that P ( X , ~ K  i i .o.)=0. But K =  
K1 w " . u  K N, so P(X ,  e K  i .o.)=0. 

The dissipative part of D of S is open, so its complement C, called the conserv- 
ative set, is closed. Although C ~ S # ,  as we have just observed, it is not true in 
general that C = S& We give an example to show this. Let Z be the set of positive 
integers with the discrete topology, and let S = Z t3 { oo } be the one-point compacti- 
fication of Z. For  each real-valued function f on S let Tf (n )=f (n+ 1) for n~Z  
and Tf(oo)=f(oo). Clearly r is a Markov operator on C(S). Let h(n)= 1/n, neZ,  
and h(oo)=0. Then h satisfies conditions (ii)-(v), which shows that Z c D .  Since 
Tnf(oo)=f(~o) for all n, conditions (i) and (v) are incompatible if x =  0% so in 
fact Z = D, and C = { oo }. But the only members of # are the constant functions, 
so S is the only ergodic set, and S g  = S. 

If S is a compact metric space, then any compact set, S#  in particular, is the 
intersection of a countable number of its open neighborhoods. It then follows from 
the corollary that Xn ~ S#  Pu-almost surely for any initial distribution #. We now 
sharpen this result. 

Theorem 2. Let T be a Markov operator on a compact metric space S. Let I~ be 
any probability measure on S, and { X, ,  n >= 0} the process with initial distribution ~. 
Then there is a set N ~  with Pu(N) =0  such that for all coCN there is an E ~ #  such 
that X,(co) converges to the escape-proof part E 1 of E and converges in density to the 
ergodic kernel K t  contained in E. 

Proof Assume the hypothesis of the theorem. Let d be a metric for S. Let f~  C(S). 
It was observed by Breiman ([2], see also [5]) that as a consequence of the "stability 
13" 
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theorem" on p. 387 of [7] we have: 

(l/n) ~ = 1  {Tf(Xk)--f(Xk+l)} ~ 0 P,-almost surely. 

Since C(S) is separable relative to the uniform norm, there is an N t e ~  with 
P(N1)=0 such that if coCN1, then 

(l/n) y,~=z {Yf(Xk(co))-f(Xk+,(co))}~O 

for e a c h f e  C(S). As observed in the proof of Theorem 3.2 of [5], this implies that 
for each f e  C(S) and each m = 1, 2,. . .  we have 

hm n 2 m 2 (T f l  (Xk(CO))) --f(Xk+x (co)) = 0  (i) 
k = l  (. \ j ~ l  t 

provided co ~ N1. 

Letf~9~. Then {f(X,), n >0} is a bounded martingale, so converges P;a lmost  
surely. But a subset of a separable metric space is separable so 9~ is separable rela- 
tive to the uniform norm. It follows that there is an N 2 e ~  with P~(N2)--0 such that 
{f(X,  (co))} converges for eachfe  9~ provided that ca ~ N 2 . We have already establish- 
ed the existence of an N3 ~ ~ with P (N 3) = 0 such that X, (co) -~ Z• provided co r N 3 . 
Suppose coCN 2 w N 3 . Then the sequence {X,(co)} has all its cluster points in I r  
Suppose one of the cluster points is in the ergodic set E. Then all the cluster points 
must be in E. For  suppose the sequence also has cluster points in another ergodic 
set F. There is an feg) /which  assumes different constant values on E and F. But 
then {f(X,(co))} cannot possibly converge, and this contradicts coCN 3 , Since S is 
compact, the fact that all the cluster points of {X,(co)} belong to E implies that 
x . (co)  -~ E. 

Now let c6 be a countable base for the topology of S. Let 0g be the class of all 
finite unions of members of (g; ~//is countable. For  each 5>0  and A c E  let A~= 
U,~176 {x: P"(x, A)_>_z}. A sequence Xo, xl, ... in S is said to have property M A if 
for each e > 0 x, a A~ i. o. ~ x, ~ A i.o. It follows from a theorem of Doeblin (see [3], 
Prop. 7) that for each AeE,  {X,(co)} has property M a for P,-almost all coet2. Thus 
there is an N4e~  with P,(N4)=0 such that, if coCN4, then {X,(co)} has property 
M v for each U e ~'. Now suppose co r N 2 u N 3 ~ N 4. All cluster points of the sequence 
{X,(co)} then belong to some ergodic set E. We claim that in fact X, (co)~ E a. For  
suppose not. Then {X,(co)} clusters at some yeE' . .EL For some value of m we 
have P"  (y, E) < 1, so there are e > 0 and 6 > 0 such that P"(y, E a) > 2 e, where 
Eo= {z: d(z, E)> ~}. Since E ~ is open, a routine argument using the regularity of 
P(y,.) demonstrates that there is a Ue~# with U c E  ~ and P"(y, U ) > y > 0 .  Let 
V= {z: P"(z, U)>7}. Then V is an open neighborhood of y, so X,(co)e V i. o. But 
Vc U~; since co~N4, we have X,(co)e U i.o. Since U c E  ~, this in turn implies that 
d(X, (co), E)>  ~ for infinitely many values of n, which contradicts X,(co)~ E. So 
all the cluster points of X,(co) belong to E t, and 3;, (co)---, E 1 . 

We need the following result. Let Eeg.  L e t f e  C(S) be into 1-0, 1] and equal to 0 
on K~. Then ( l / n ) (T f+  ... + T"f) goes uniformly to 0 on E 1. For  suppose not. 
Then there is an a > 0 and Xl, xz, ..., x, ,  ... in E a together with n~ < n2 < . . .  < nk <"" 
for which ( 1 / n k ) ~ 1  TJf(xk) >e for each k= 1, 2, .... By taking a subsequence if 
necessary, we may assume that (1/nk)~]E~ T *j 6~ converges in the weak topology 
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as k ~ o 9  to a measure 2. Then 2 ~ f ;  furthermore, since E 1 is self-supporting, 
,~ (E 1) = 1. Since 2 (E) > 2 (EI) = 1, 2 (KE) = 1 by definition of K~. Since f = 0 on KE, 
we have 0 = (g, 2)= lira (f, (1/nk) ~ 1  T* J ~ )  >= e, which is a contradiction. 

We now complete the proof of the theorem by showing that if coCN~ u N z u 
N 3 ~ N 4 ,  then {X,(co)}, which converges to the escape-proof part E 1 of some 
EEg by virtue of co not belonging to N 2 w N 3 w N 4, converges in density to the 
ergodic kernel K E of E. This amounts to showing that for each open set Vcontaining 
K~, lim ( l /n)~,=~ lw(Xk(co)) =0  for all such co. Let e>0.  Pick f~ C(S), with f > 0 ,  

n 

f =  1 on V~,f = 0 in K E. By virtue of what we showed in the preceding paragraph, 
there is an m with (i/m) ~k~ 1Tkf < ~ on E 1. Since X, (co) ~ E 1, 

SO 

lim sup (l/m) ~j~=1 (T J f) (X,(co)) < e, 
n 

n [ 1 m 

limsUPnk~=limL(TJjO(X,(co)) ) <e. (2) 

Because co~N 1, (1) holds, but (1) and (2) imply that 

lim sup (l/n) ~,=lf(Xk+a (co))____ 2e. 
n 

Since l vc < f l imsup (l/n) ~,=1 1vc(Xk(CO))~ 2 e. But e is arbitrary, so this completes 

the proof of the theorem. 
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