Skip to main content
Log in

A spectral-shift study of the hydrophobic hydration of benzene

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

A study has been made on the shifts in the spectrum of the S 1←S0 transition in benzene molecules transferred from low-density vapor to dilute, liquid solutions in order to estimate the geometrical parameter R v 1u, characterizing the distribution of the solvent molecules around the solute. The R v 1u parameter is a measure of the repulsion between the solution components. Effective radii have been derived for the fluctuation cavities whose existence in the pure solvent is necessary to the dissolution. The free energy, enthalpy, and entropy of the boundary between a solute molecule and the solvent have been derived for aqueous solutions. The energy of the hydrogen bonds in pure water has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. A. Ben-Naim, Hydrophobic Interactions, Plenum Press, New York-London (1980).

    Google Scholar 

  2. F. Franks, “Hydrophobic interactions — a historical perspective,” Faraday Symp. Chem. Soc., 17, 7–10 (1982).

    Google Scholar 

  3. A. Tani, “Nonpolar solute-water pair correlation functions. A comparison between computer simulation and theoretical results,” Mol. Phys., 48, No. 6, 1229–1240 (1983).

    Google Scholar 

  4. I. A. Ar'ev, “Limiting cases in the effects of solution structure on electronic-absorption spectrum shifts for solute molecules,” Opt. Spektrosk., 40, No. 1, 19–25 (1976).

    Google Scholar 

  5. O. V. Sverdlova, Electronic Spectra in Organic Chemistry [in Russian], Khimiya, Leningrad (1985).

    Google Scholar 

  6. N. G. Bakhshiev, Molecular Interaction Spectroscopy [in Russian], Nauka, Leningrad (1972).

    Google Scholar 

  7. I. A. Ar'ev and G. G. Dyadyusha, “The effects of vibronic interaction in molecules on solvent-induced changes in electronic spectra,” Opt. Spektrosk., 45, No. 1, 37–41 (1978).

    Google Scholar 

  8. I. A. Ar'ev, G. G. Dyadyusha, and N. V. Makhlinets, “The effects of spin-orbit interaction in monohalobenzenes and p-dihalobenzenes on solvent-induced shifts in electronic spectra,” Opt. Spektrosk., 55, No. 2, 285–291 (1983).

    Google Scholar 

  9. I. A. Ar'ev and Yu. V. Kolodii, “Incorporating solution structure in examining the effects of hydrogen bonds to the solvent on the shifts in the electronic spectra of solute molecules,” Zh. Prikl. Spektrosk., 38, No. 4, 620–626 (1983).

    Google Scholar 

  10. I. A. Ar'ev and Yu. I. Tarasevich, “A study of the states of anthracene in solid and liquid solutions and on adsorbents,” Teor. Éksp. Khim., 21, No. 6, 686–692 (1985).

    Google Scholar 

  11. E. G. McRae, “Theory of the solvent effects on molecular electronic spectra. Frequency shifts,” J. Phys. Chem., 61, No. 5, 562–572 (1957).

    Google Scholar 

  12. G. Ya. Zelikina and T. G. Meister, “The effects of cryogenic solvents on electronic bands of different types: ππ* and Rydberg ones,” Opt. Spektrosk., 43, No. 1, 85–90 (1977).

    Google Scholar 

  13. N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  14. B. P. Nikol'skii (editor), Chemists' Handbook [in Russian], Vol. 1 and 2, Khimiya, Moscow-Leningrad (1966).

    Google Scholar 

  15. I. A. Ar'ev and N. V. Makhlinets, “Allowing for vibronic interaction in benzene on examining solution structure by spectral-shift methods,” Zh. Prikl. Spektrosk., 35, No. 5, 839–843 (1981).

    Google Scholar 

  16. G. Herzberg, Electronic Spectra and the Structure of Polyatomic Molecules, Van Nostrand (1966).

  17. L. Bosi, “The Frank-Condon principle: considerations on the correctness of its formulation,” Lett. Nuovo Cimento, 40, No. 12, 369–372 (1984).

    Google Scholar 

  18. G. H. Atkinson and C. S. Paramenter, “The 260 nm absorption spectrum of benzene: remeasured band positions and refined assignments,” J. Mol. Spectrosc., 73, No. 1, 20–30 (1978).

    Google Scholar 

  19. I. A. Ar'ev, G. G. Dyadyusha, G. V. Klimusheva, and G. M. Soroka, “The effect of spinorbit interaction in monohalobenzenes and p-dihalobenzenes on vibrational frequency changes in the S1 state produced by the environment,” Opt. Spektrosk., 55, No. 4, 653–656 (1983).

    Google Scholar 

  20. A. F. Lubchenko, Quantized Transitions in Impurity Centers in Solids [in Russian], Nauka Dumka, Kiev (1978).

    Google Scholar 

  21. J. L. Dejardin, R. Marrony, C. Delseny, et al., “Une nouvelle definition des volumes libres dans les liquides non associes: application a la determination des diametres moleculaires,” Rheol. Acta, 20, No. 5, 497–500 (1981).

    Google Scholar 

  22. Y. P. Handa and G. C. Benson, “Volume changes on mixing two liquids: a review of the experimental techniques and literature data,” Fluid Phase Equilibria, 3, No. 2/3, 185–249 (1979).

    Google Scholar 

  23. M. B. Ewing, K. N. Marsh, R. H. Stokes, and R. P. Tomlins, “Enthalpies of mixing of carbon tetrachloride + benzene at 288.15 and 318.15°K,” J. Chem. Thermodyn., 2, No. 2, 297–298 (1970).

    Google Scholar 

  24. R. J. Rossky and D. A. Zichi, “Molecular librations and solvent orientational correlations in hydrophobic phenomena,” Faraday Symp. Chem. Soc., 17, 69–78 (1982).

    Google Scholar 

  25. K. Nakanishi, K. Ikari, S. Okasaki, and A. Touhara, “Computer experiments on aqueous solutions. 3. Monte Carlo calculations on the hydration of tertiary butyl alcohol in an infinitely dilute aqueous solution with a new water-butanol pair potential,” J. Chem. Phys., 80, No. 4, 1656–1670 (1984).

    Google Scholar 

  26. O. Ya. Samoilov, “Principles of the kinetic theory of hydrophobic hydration in dilute aqueous solution,” Zh. Khim., 52, No. 8, 1654–1658 (1978).

    Google Scholar 

  27. A. Ben-Naim, “A statistical mechanical study of hydrophobic interaction. 1. Interaction between two identical nonpolar solute particles,” J. Chem. Phys., 54, No. 3, 1387–1404 (1971).

    Google Scholar 

  28. D. Chandler, “Quantum theory of solvation,” J. Phys. Chem., 88, No. 16, 3400–3407 (1984).

    Google Scholar 

  29. O. Sinanoglu, “Microscopic surface tension down to molecular dimensions and microthermodynamic surface areas of molecules or clusters,” J. Chem. Phys., 75, No. 1, 463–468 (1981).

    Google Scholar 

  30. R. A. Pierotti, “A scaled particle theory of aqueous and nonaqueous solutions,” Chem. Rev., 76, No. 6, 717–726 (1976).

    Google Scholar 

  31. G. Nemethy and H. A. Scheraga, “Structure of water and hydrophobic bonding in proteins. 2. Model for the thermodynamic properties of aqueous solutions of hydrocarbons,” J. Chem. Phys., 36, No. 12, 3401–3417 (1962).

    Google Scholar 

  32. T. Halicioglu and O. Sinanoglu, “Solvent effect on cis-trans azobenzene isomerization: a detailed application of a theory solvent effect on molecular association,” Ann. N.Y. Acad. Sci., 158, No. 1, 308–317 (1969).

    Google Scholar 

  33. O. Sinanoglu, “What size cluster is like a surface,” Chem. Phys. Lett., 81, No. 2, 188–190 (1981).

    Google Scholar 

  34. M. A. Hooper and S. Nordholm, “Generalized van der Waals theory. 13. Curved interfaces in simple fluids,” J. Chem. Phys., 81, No. 5, 2432–2438 (1984).

    Google Scholar 

  35. N. Morel-Desrosiers and J.-P. Morel, “Evaluation of thermodynamic functions relative to cavity formation in liquids: uses and misuses of scaled particle theory,” Can. J. Chem., 59, No. 1, 1–7 (1981).

    Google Scholar 

  36. M. K. Dutta-Choudhury, N. Miljevic, and W. A. Hook, “Isotope effects in aqueous systems. 13. The hydrophobic interaction. Some thermodynamic properties of benzene/water and toluene/water solutions and their isotope effects,” J. Phys. Chem. 86, No. 9, 1711–1721 (1982).

    Google Scholar 

  37. N. B. Vargaftik, L. D. Volyak, and B. N. Volkov, “The surface tension of water in the range from 0 to 370°C,” in: Surface Phenomena in Liquids [in Russian], Izd. Leningrad Univ., Leningrad (1975), pp. 189–192.

    Google Scholar 

  38. K. P. Mishchenko and A. A. Ravdel' (editors), A Brief Handbook of Physiochemical Quantities [in Russian], Goskhimizdat (1959).

  39. S. J. Gill, N. F. Nichols, and I. Wadsö, “Calorimetric determination of enthalpies of solution of slightly soluble liquids. 1. Application to benzene in water,” J. Chem. Thermodyn., 7, No. 1, 175–183 (1975).

    Google Scholar 

  40. Yu. Ya. Efimov and Yu. I. Naberukhin, “The basis for a continuum model for the structure of liquid water provided by the temperature dependence of vibrational spectra,” Zh. Strukt. Khim., 21, No. 3, 95–105 (1980).

    Google Scholar 

  41. N. Ohtomo, K. Toklwano, and K. Arakawa, “The structure of liquid water by neutron scattering,” Bull. Chem. Soc. Jpn., 54, No. 6, 1802–1808 (1981).

    Google Scholar 

  42. A. P. Zhukovskii and N. V. Rovnov, “Spectroscopic determination of thermodynamic characteristics for hydrogen bonds in water,” Zh. Prikl. Spektrosk., 41, No. 2, 229–233 (1984).

    Google Scholar 

  43. I. Cibulka and R. Holub, “Evaluation of the dependence of excess volume of benzene-cyclohexane mixture on composition at 298.15 K from literature data,” Collect. Czech. Chem. Commun., 48, No. 1, 199–202 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 3, pp. 329–339, May–June, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ar'ev, I.A. A spectral-shift study of the hydrophobic hydration of benzene. Theor Exp Chem 23, 303–312 (1987). https://doi.org/10.1007/BF00531384

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00531384

Keywords

Navigation