Skip to main content
Log in

Low-lying electronic excitations of a water-soluble BODIPY: from the gas phase to the solvated molecule

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a description of the optical properties of a water-soluble BODIPY derivative in the gas phase and in water. Comparison with a hydrophobic BODIPY derivative with very similar structure but deprived of the hydrophilic groups, clarifies the effects of functionalization. The changes in solution are studied at different levels of modeling. In particular, we make use of Car–Parrinello molecular dynamics to take thermal motion into account, by generating a set of molecular configurations at about room temperature and embedding them in the polarizable continuum model (PCM) for the solvent. The theoretical scheme is that of time-dependent density functional theory which we apply using different approximations for the exchange-correlation functionals. Changes in the low-lying excitation spectrum (≈2.5–4.5 eV) of the solvated molecule in water relative to gas phase are shown to be due not only to the electrostatic interaction with the solvent but also to the thermal motion that induces a downward energy shift and broadening of the absorption lines. Addition of explicit water molecules to the PCM only affects spectral features at higher energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that the same analysis of broadening and shift of energy and oscillator strength could have been carried out in terms of the derivatives of \(\Delta E_i\) and \(f_i\) with respect to Cartesian displacements of atoms, without resorting to normal modes [60]. The translation between the two pictures is based on the following relation:

    $$\begin{aligned} \mid \frac{\partial \Delta E_k}{\partial \delta _j}\mid =\mid \sum _{i=1}^{N_a} \mathbf{k}^{(j)}_i \frac{\partial \Delta E_k}{\partial \mathbf{R}_i} \mid \end{aligned}$$
    (6)

    The usage of vibrational eigenvalues and eigenvectors greatly eases the computation of equilibrium values.

References

  1. Karolin J, Johansson LB-A, Strandberg L, Ny T (1994) J Am Chem Soc 116:7801–7806

    Article  CAS  Google Scholar 

  2. Loudet A, Burgess K (2007) Chem Rev 107:4891–4932

    Article  CAS  Google Scholar 

  3. Sunahara H, Urano Y, Kojima H, Nagano T (2007) J Am Chem Soc 129:5597–5604

    Article  CAS  Google Scholar 

  4. Li L, Han J, Nguyen B, Burge SS (2008) K J Org Chem 73:1963–1970

    Article  CAS  Google Scholar 

  5. Ulrich G, Ziessel R, Harriman A (2008) Angew Chem Int Ed 47:1184–1201

    Article  CAS  Google Scholar 

  6. Rousseau T, Cravino A, Bura T, Ulrich G, Ziessel R, Roncali J (2009) Chem Commun 13:1673–1675

    Article  Google Scholar 

  7. Benniston A, Copley G (2009) Phys Chem Chem Phys 11:4124–4131

    Article  CAS  Google Scholar 

  8. Boens N, Leen V, Dehaen W (2012) Chem Soc Rev 41:1130–1172

    Article  CAS  Google Scholar 

  9. Boens N, Leen V, Dehaen W (2015) Eur J Org Chem 30:6577–6595

    Article  Google Scholar 

  10. Niu S-L, Massif C, Ulrich G, Renard P-Y, Romieu A, Ziessel R (2012) Chem Eur J 18:7229–7242

    Article  CAS  Google Scholar 

  11. Kamkaew A, Lim SH, Lee HB, Voon Kiew L, Chung LY, Burgess K (2013) Chem Soc Rev 42:77–88

    Article  CAS  Google Scholar 

  12. Gayathri T, Barui AK, Suthari P, Patra CR, Singh SP (2014) RSC Adv 4:47409–47413

    Article  CAS  Google Scholar 

  13. Kamkaew A, Burgess K (2015) Chem Commun 51:10664–10667

    Article  CAS  Google Scholar 

  14. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  15. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212–1215

    Article  CAS  Google Scholar 

  16. Marques M, Gross E (2004) Annu Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  17. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123–135

    Article  CAS  Google Scholar 

  18. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  19. Jacquemin D, Planchat A, Adamo C, Mennucci B (2012) J Chem Theory Comput 8:2359–2372

    Article  CAS  Google Scholar 

  20. Le Guennic B, Maury O, Jacquemin D (2012) Phys Chem Chem Phys 14:157–164

    Article  Google Scholar 

  21. Chibani S, Le Guennic B, Charaf-Eddin A, Maury O, Andraud C, Jacquemin D (2012) J Chem Theory Comput 8:3303–3313

    Article  CAS  Google Scholar 

  22. Chibani S, Le Guennic B, Charaf-Eddin A, Laurenta AD, Jacquemin D (2013) Chem Sci 4:1950–1963

    Article  CAS  Google Scholar 

  23. Momeni MR, Brown A (2015) J Chem Theory Comput 11:2619–2632

    Article  CAS  Google Scholar 

  24. Tomasi J (2004) Theor Chem Acc 112:184–203

    Article  CAS  Google Scholar 

  25. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  26. Cimino P, Barone V (2005) J Mol Struct THEOCHEM 729:1–9

    Article  CAS  Google Scholar 

  27. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124:094107–094121

    Article  Google Scholar 

  28. Mennucci B, Cappelli C, Guido CA, Cammi R, Tomasi J (2009) J Phys Chem A 113:3009–3020

    Article  CAS  Google Scholar 

  29. Chibani S, Laurent AD, Le Guennic B, Jacquemin D (2014) J Chem Theory Comput 10:4574–4582

    Article  CAS  Google Scholar 

  30. Head-Gordon M, Rico RJ, Oumi M, Lee T (1994) Chem Phys Lett 219:21–29

    Article  CAS  Google Scholar 

  31. Head-Gordon M, Maurice D, Oumi M (1995) Chem Phys Lett 246:114–121

    Article  CAS  Google Scholar 

  32. Grimme S, Neese F (2007) J Chem Phys 127:154116–154133

    Article  Google Scholar 

  33. Niu SL, Ulrich G, Ziessel R, Kiss A, Renard P-Y, Romieu A (2009) Org Lett 11:2049–2052

    Article  CAS  Google Scholar 

  34. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  38. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  39. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  40. Gerber IC, Angyan JG (2005) Chem Phys Lett 415:100–105

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian Development Version, Gaussian Inc., Wallingford, CT

  42. Casida ME (1995) Recent advances in density functional methods, part I, vol 1. World Scientific, Singapore

    Google Scholar 

  43. Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291–299

    Article  CAS  Google Scholar 

  44. Chantzis A, Laurent AD, Adamo C, Jacquemin D (2013) J Chem Theory Comput 9:4517–4525

    Article  CAS  Google Scholar 

  45. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  46. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  47. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  48. CPMD, Copyright IBM Corp. 1990-2016, Copyright MPI für Festkörperforschung Stuttgart 1997-2001, http://www.cpmd.org

  49. Yoo S, Zahariev F, Sok S, Gordon MS (2008) J Chem Phys 129:144112–144119

    Article  Google Scholar 

  50. Malcolgiu OB, Calzolari A, Gebauer R, Varsano D, Baroni S (2011) J Am Chem Soc 133:15425–15433

    Article  Google Scholar 

  51. Douma DH, Passi-Mabiala BM, Gebauer R (2012) J Chem Phys 137:154314–154318

    Article  Google Scholar 

  52. Timrov I, Micciarelli M, Rosa M, Calzolari A, Baroni S (2016) J. Chem. Theory Comput. 4423-4429

  53. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1998) Phys Rev Lett 80:891–894

    Article  CAS  Google Scholar 

  55. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  56. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118–044125

    Article  Google Scholar 

  57. Luzar A, Chandler D (1996) Nature 379:55–57

    Article  CAS  Google Scholar 

  58. Starr FW, Nielsen JK, Stanley HE (1999) Phys Rev Lett 82:2294–2297

    Article  CAS  Google Scholar 

  59. Barone V, Improta R, Rega N (2008) Acc Chem Res 41:605–616

    Article  CAS  Google Scholar 

  60. Santoro F, Lami A, Improta R, Barone V (2007) J Chem Phys 126:184102–184113

    Article  Google Scholar 

Download references

Acknowledgements

Part of the computer resources were granted by CADMOS and the BG/Q project at the Swiss Federal Institute of Technology in Lausanne (EPFL). The financial support for CADMOS and the Blue Gene/Q system is provided by the Canton of Geneva, Canton of Vaud, Hans Wilsdorf Foundation, Louis-Jeantet Foundation, University of Geneva, University of Lausanne and the Swiss Federal Institute of Technology in Lausanne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Andreoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16861 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egidi, F., Trani, F., Ballone, P.A. et al. Low-lying electronic excitations of a water-soluble BODIPY: from the gas phase to the solvated molecule. Theor Chem Acc 135, 264 (2016). https://doi.org/10.1007/s00214-016-2011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2011-9

Keywords

Navigation