Skip to main content
Log in

Geometry and force constant determination from correlated wave functions for polyatomic molecules: Ground states of H2O and CH2

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Ab initio calculations including electron correlation are reported for the water and methylene molecules as a function of geometry. A large contracted gaussian basis set is used and the multiconfiguration wave functions, optimized by the iterative natural orbital procedure, include 277 and 617 configurations for H2O and CH2 respectively. The method of selecting configurations, yielding “first-order” wave functions, is discussed in some detail. For H2O, the SCF geometry is r=0,942 Å, θ=105,8°, the correlated result is r=0,968 Å, θ=103,2°, and the experimental r=0,957 Å, θ=104,5°. The water stretching force constants, in millidynes/Å, are 8,72 (SCF), 8,75 (CI), and 8,4 (experiment). Bending force constants are 0,88 (SCF), 0,83 (CI), and 0,76 (experiment). For methylene the SCF geometry is r=1,072 Å, θ=129,5°, while the result from first-order wave functions is r=1,088 Å, θ=134°. The predicted CH2 force constants are 6,16 (SCF) and 6,13 (CI) for stretching and 0,44 (SCF) and 0,33 (CI) for bending.

Zusammenfassung

Es wird über ab intito-Rechnungen mit Berücksichtigung der Elektronenkorrelation berichtet, die an Wasser- und Methylenmolekülen als Funktion der Geometrie durchgeführt worden sind. Dazu benutzt man einen großen kontrahierten Gauß-Basissatz. Die Multikonfigurationswellenfunktionen, die unter Benutzung von natürlichen Orbitalen nach der iterativen Prozedur optimiert werden, enthalten für H2O 277 Konfigurationen und für CH2 617. Die Auswahlmethode, die zu Wellenfunktionen 1. Ordnung führt, wird diskutiert. Im Falle des Wassers erhält man die SCF-Geometrie zu r=0,942 Å, θ=105,8°, das korrelierte Resultat ist: r=0,968 Å, θ=103,2° und das experimentelle r=0,957 Å, θ=104,5°. Für Wasser ergeben sich die Valenzkraftkonstanten (in Millidyn Å−1) 8,72 (SCF), 8,75 (CI) und 8,4 (Experiment). Die Deformationskonstanten sind 0,88 (SCF), 0,83 (CI) und 0,76 (Experiment). Im Falle des Methylens ist die SCF-Geometrie r=1,072 Å, θ=129,5°, während man mit Wellenfunktionen 1. Ordnung r=1,088 Å und θ=134° erhält. Die CH2-Kraftkonstanten werden für die Valenzschwingung zu 6,16 (SCF) und 6,13 (CI) bzw. für die Deformationsschwingung zu 0,44 (SCF) und 0,33 (CI) vorausgesagt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Löwdin,P.O.: Advances chem. Physics 2, 207 (1959).

    Google Scholar 

  2. Clementi,E.: J. chem. Physics 38, 2248 (1963).

    Google Scholar 

  3. Wahl,A.C.: J. chem. Physics 41, 2600 (1964).

    Google Scholar 

  4. Cade,P.E., Huo,W.M.: J. chem. Physics 47, 614, 649 (1967).

    Google Scholar 

  5. Yoshimine,M., McLean,A.D.: Int. J. quant. Chemistry 1S, 313 (1967).

    Google Scholar 

  6. Neumann,D., Moskowitz,J.W.: J. chem. Physics 49, 2056 (1968).

    Google Scholar 

  7. Grimaldi,F., Lecourt,A., Moser,C.: Int. J. quant. Chemistry 1S, 153 (1967).

    Google Scholar 

  8. Bender,C.F., Davidson,E.R.: J. chem. Physics 49, 4222 (1968).

    Google Scholar 

  9. Green,S.: J. chem. Physics 54, 827 (1971).

    Google Scholar 

  10. Das,G., Wahl,A.C.: Physic. Rev. Letters 24, 440 (1970).

    Google Scholar 

  11. Schaefer,H.F.: J. chem. Physics 54, 2207 (1971).

    Google Scholar 

  12. Potential surfaces have been obtained (using wave functions including electron correlation) for systems containing very few electrons. See, for example, Edmiston,C., Doolittle,J., Murphy,K., Tang,K.C., Willson,W.: J. chem. Physics 53, 3419 (1970).

    Google Scholar 

  13. Schaefer,H.F., Bender,C.F.: J. chem. Physics 55, 1720 (1971).

    Google Scholar 

  14. —, J. chem. Physics 55, 176 (1971).

    Google Scholar 

  15. O'Neil,S.V., Pearson,P.K., Schaefer,H.F.: Chem. Physics Letters 10, 404 (1971).

    Google Scholar 

  16. Bernheim,R.A., Bernard,H.W., Wang,P.S., Wood,L.S., Skell,P. S.: J. chem. Physics 53, 1280 (1970).

    Google Scholar 

  17. Wasserman,E., Kuck,V.J., Hutton,R.S., Yager,W.A.: J. Amer. chem. Soc. 92, 7491 (1970).

    Google Scholar 

  18. Herzberg,G., Johns,J.W.C.: J. chem. Physics 54, 2276 (1971).

    Google Scholar 

  19. Huzinaga,S.: J. chem. Physics 42, 1293 (1965).

    Google Scholar 

  20. Dunning,T.H.: Gaussian Basis Functions for Use in Molecular Calculations III Contraction of (10s 6p) Atomic Basis Sets for the First-Row Atoms, to be published.

  21. - Gaussian Basis Functions for Use in Molecular Calculations IV. The Representation of Polarization Functions for the First-Row Atoms and Hydrogen, to be published.

  22. Hosteny,R.P., Gilman,R.R., Dunning,T.H., Pipano,A., Shavitt,I.: Chem. Physics Letters Vol. 7, 325 (1970).

    Google Scholar 

  23. Wahl,A.C., Das,G.: Advances quant. Chem. 5, 261 (1970).

    Google Scholar 

  24. Schaefer,H.F., Klemm,R.A., Harris,F.E.: Physic. Rev. 181, 137 (1969).

    Google Scholar 

  25. Roothaan,C.C.J.: Rev. mod. Physics 23, 69 (1951); 32, 179 (1960).

    Google Scholar 

  26. Bender,C.F., Davidson,E.R.: J. physic. Chemistry 70, 2675 (1966).

    Google Scholar 

  27. — —: Physic. Rev. 183, 23 (1969).

    Google Scholar 

  28. Löwdin,P.O.: Physic. Rev. 97, 1474 (1955).

    Google Scholar 

  29. Bender,C.F., Schaefer,H.F.: J. molecular Spectroscopy 37, 423 (1971).

    Google Scholar 

  30. Benedict,W.S., Gailar,N., Plyer,E.K.: J. chem. Physics 24, 1139 (1956).

    Google Scholar 

  31. Nibler,J.W., Pimentel,G. C.: J. molecular Spectroscopy 26, 294 (1968).

    Google Scholar 

  32. Duncan,J.L., Mills,I.M.: Spectrochim. Acta 20, 523 (1964).

    Google Scholar 

  33. Lin,B., Schaefer,H.F.: J. chem. Physics 55, 2369 (1971).

    Google Scholar 

  34. Pearson,P.K., Bender,C.F., Schaefer,H.F.: J. chem. Physics 55, 5235 (1971).

    Google Scholar 

  35. Freed,K.F.: J. chem. Physics 52, 253 (1970).

    Google Scholar 

  36. Foster,J.M., Boys,S.F.: Rev. mod. Physics 32, 305 (1960).

    Google Scholar 

  37. Harrison,J.F., Allen,L.C.: J. Amer. chem. Soc. 91, 807 (1969).

    Google Scholar 

  38. Bender,C.F., Schaefer,H.F.: J. Amer. chem. Soc. 92, 4984 (1970).

    Google Scholar 

  39. Herzberg,G.: Proc. Roy. Soc. (London) A 262, 291 (1961).

    Google Scholar 

  40. Wasserman,E., Yager,W.A., Kuck,V.J.: Chem. Physics Letters 7, 409 (1970).

    Google Scholar 

  41. Bernheim,R.A., Bernard,H.W., Wang,P.S., Wood,L.S., Skell,P.S.: J. chem. Physics 54, 3223 (1971).

    Google Scholar 

  42. Hoffman,R.: Personal communication.

  43. Allen,L.C., Franceschetti,D.R.: To be published.

  44. Bender,C.F., Schaefer,H.F.: J. chem. Physics 55, 4798 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the U.S. Atomic Energy Commision.

Supported by the grants from the Research Corporation and the University of California Committee on Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, D.R., Bender, C.F. & Schaefer, H.F. Geometry and force constant determination from correlated wave functions for polyatomic molecules: Ground states of H2O and CH2 . Theoret. Chim. Acta 25, 352–359 (1972). https://doi.org/10.1007/BF00526567

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526567

Keywords

Navigation