Skip to main content
Log in

Interpretation of the gas residence time distributions in large stirred tank reactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The behaviour of dispersed gas in large aerated stirred tank reactors is modelled by means of a Markov-process, which distinguishes between small recirculation bubbles with “stagnant gas” content, large rising bubbles with “active gas” content and exchange of stagnant and active gas contents, the “gas exchange” region at the impeller. The measurements of the gas residence time distributions (RTDs) in an 1.5 m3 aerated stirred tank reactor with water and Penicillium chrysogenum cultivation medium are interpreted by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPR:

CO2 production rate

OTR:

oxygen transfer rate

PRS:

pseudo random signal

RTD:

residence time distribution

V :

gas volume

α :

recirculation coefficient

τ :

mean gas residence time

act :

active gas

ex :

gas exchange

stagn :

stagnant gas

tot :

total gas

References

  1. Westerterp, K. R.; Van Dierendonk, L. L.; Kraa, A. J.: Interfacial areas in agitated gas-liquid contractors. Chem. Eng. Sci. 18 (1963) 157–176

    Google Scholar 

  2. Hanhart, J.; Kramers, H.; Westerterp, K.R.: The residence time distribution of the gas in an agitated gas-liquid contactor. Chem. Eng. Sci. 18 (1963) 503–509

    Google Scholar 

  3. Gal-Or, B.; Resnick, W.: Gas residence time in agitated gas-liquid contactor. Ind. Eng. Chem. Proc. Des. Dev. 5 (1966) 15–19

    Google Scholar 

  4. Popovic, M.; Papalexion, A.; Reuss, M.: Gas residence time distribution in stirred tank reactors, VIth Int. Fermentation Symposium 1980, Eastburn

  5. Popovic, M.; Papalexion, A.; Reuss, M.: Gas residence time distribution in stirred tank bioreactors. Chem. Eng. Sci. 38 (1983) 2015–2025

    Google Scholar 

  6. Lübbert, A.; Dieckmann, J.; Rotzoll, G.: Pseudorandom techniques for measuring residence time distributions. In Pethö, A.; Noble, R. D. (Eds.): Residence time distribution theory in chemical engineering, Weinheim: Verlag Chemie 1982 pp. 223–227

    Google Scholar 

  7. Takashima, I.; Mochiziku, M.: Tomographic observations of the flow around the agitator impeller. Chem. Eng. (Japan) 4 (1971) 66–72

    Google Scholar 

  8. Van't Riet, K.; Smith, J. M.: The behaviour of gas-liquid mixtures near Rushton turbine blades. Chem. Eng. Sci. 28 (1973) 1031–1037

    Google Scholar 

  9. Van't Riet, K.; Boom, J. M.; Smith, J. M.: Power consumption, impeller coalescence and recirculation in aerated vessels. Trans. Instn. Chem. Engrs. 54 (1976) 124–131

    Google Scholar 

  10. Reuss, M.: Mathematical models of coupled oxygen transfer and microbial kinetics in bioreactors. In: Halme, A. (ed.): IFAC-Symp. Modelling and control of biotechnical processes, Oxford: Pergamon Press, 1982 pp. 43–55.

    Google Scholar 

  11. Bajpai, R. K.; Reuss, M.: Coupling of mixing and microbial kinetics for evaluating the performance of bioreactors. Can. J. Chem. Eng. 60 (1982) 384–392

    Google Scholar 

  12. Schügerl, K.: Comparison of different bioreactor performances. Bioprocess Eng. 9 (1993) 215–223

    Google Scholar 

  13. Abel, C.; Hübner, U. S.; Schügerl, K.: Transient behaviour of Bakers' yeast during enforced periodical variation of dissolved oxygen concentration. J. Biotechnol. 32 (1994) 45–57

    Google Scholar 

  14. Pethö, A.: A simple mathematical treatment of a linear sorption modelled by a Markov Process. Presented at the 2nd North American/German Workshop on Chemical Engineering Mathematics and Computation, July 1990, Göttingen, Germany

  15. Pethö, A.: Distributions in time and space, respectively in the case of continuous flow with sorption in a fixed bed. Chem. Eng. Sci. 25 (1970) 769–778

    Google Scholar 

  16. Rüffer, H. M.: Untersuchungen zur Charakterisierung der Fuiddynamik in Bioreaktoren. Dissertation, University Hannover, 1990

  17. Fröhlich, S.; Lotz, M.; Korte, T.; Lübbert, A.; Schügerl, K.; Seekamp, M.: Characterization of a pilot plant airlift tower loop bioreactor. I. Evaluation of the phase properties with model media. Biotechnol. Bioeng. 38 (1991) 43–55.

    Google Scholar 

  18. Hotop, S.; Möller, J.; Niehoff, J.; Schügerl, K.: Influence of the preculture conditions on the pellet size of Penicillium chrysogenum cultivations. Process Biochem. 28 (1993) 99–104

    Google Scholar 

  19. Bröring, S.: Entwicklung eines Ultraschallreflexionsverfahrens zur Messung von Blaseneigenschaften in Mehrphasenreaktoren. Dissertation, University Hannover, 1993

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the 65th birthday of Professor Fritz Wagner.

The authors thank Hoechst AG for the strain and the medium components, the GBF for the support of the experiments and H.M. Rüffer thanks the Verband der Chemischen Industrie for a Fond-der-Chemie scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüffer, H.M., Pethö, A., Schügerl, K. et al. Interpretation of the gas residence time distributions in large stirred tank reactors. Bioprocess Engineering 11, 145–152 (1994). https://doi.org/10.1007/BF00518736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00518736

Keywords

Navigation