Skip to main content
Log in

Phase relations inferred from field data for mn pyroxenes and pyroxenoids

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Electron microprobe analysis of manganese silicates from Balmat, N.Y., has helped elucidate phase relations for Mn-bearing pyroxenes and pyroxenoids. A compilation of these data along with published and unpublished analyses for phases plotting on the CaSiO3-MgSiO3-MnSiO3 and CaSiO3-FeSiO3-MnSiO3 faces of the RSiO3 tetrahedron has constrained the subsolidus phase relations. For the system CaSiO3-FeSiO3-MnSiO3, the compositional gaps between bustamite/hedenbergite, bustamite/ rhodonite and rhodonite/pyroxmangite are constrained for middle-upper amphibolite facies conditions and extensive solid solutions limit possible three phase fields. For the CaSiO3-MgSiO3-MnSiO3 system much less data are available but it is clear that the solid solutions are much more limited for the pyroxenoid structures and a continuum of compositions is inferred for clinopyroxenes from diopside to kanoite (MnMgSi2O6) for amphibolite facies conditions (T=650° C). At lower temperatures, Balmat kanoites are unstable and exsolve into C2/c calciumrich (Ca0.68Mn0.44Mg0.88Si2O6) and C2/c calciumpoor (Ca0.12Mn1.02Mg0.86Si2O6) phases. At temperatures of 300–400° C the calcium-poor phase subsequently has undergone a transformation to a P21/c structure; this exsolution-inversion relationship is analogous to that relating augites and pigeonites in the traditional pyroxene quadrilateral. Rhodonite coexisting with Mn-clinopyroxenes is compositionally restricted to Mn0.75–0.95Mg0.0–0.15Ca0.05–0.13SiO3. For the original pyroxene+rhodonite assemblage, the Mg and Ca contents of the rhodonite are fixed for a specific P (6kbars)-T (650° C)-X(H2O)-X(CO2) by the coexistence of talc+quartz and calcite+quartz respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto S, Syono Y (1972) High pressure transformation in MnSiO3. Am Mineral 57:76–84

    Google Scholar 

  • Bohlen SR, Boettcher AL (1980) The effect of magnesium on orthopyroxene-olivine-quartz stability: orthopyroxene geobarometry (abstr). Trans Am Geophys Union 61 (17), 393

    Google Scholar 

  • Bohlen SR, Boettcher AL, Dollase W, Essene EJ (1980a) The effect of manganese on olivine-quartz-orthopyroxene stability. Earth Planet Sci Lett 47:11–20

    Google Scholar 

  • Bohlen SR, Essene EJ (1977) Feldspar and oxide thermometry of granulites in the Adirondack Highlands. Contrib Mineral Petrol 62:163–169

    Google Scholar 

  • Bohlen SR, Essene EJ (1978) Igneous pyroxenes from metamorphosed anorthosite massifs. Contrib Mineral Petrol 65:433–442

    Google Scholar 

  • Bohlen SR, Essene EJ, Boettcher AL (1980b) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planet Sci Lett 47:1–10

    Google Scholar 

  • Bowen NL, Schairer JF, Posnjak E (1933) The system CaOFeO-SiO2. Am J Sci 26:193–283

    Google Scholar 

  • Brown PE, Essene EJ, Kelly WC (1978) Sphalerite geobarometry in the Balmat-Edwards district, New York. Am Mineral 63:250–257

    Google Scholar 

  • Burnham CW (1971) The crystal structure of pyroxferroite from Mare Tranquillitatis. Proc Second Lunar Sci Conf. Geochim Cosmochim Acta (Suppl 2) 1:MIT Press, pp 47–57

  • Carpenter MA (1978) Nucleation of augite at antiphase boundaries in pigeonite. Phys Chem Minerals 2:237–251

    Google Scholar 

  • Chopin C (1978) Oxidized and reduced parageneses in Mn-deposits of the “schistes lustres” from Haute-Maruienne (French Alps). Bull Soc Fr Mineral Cristallogr 101:514–531

    Google Scholar 

  • Davidson LR (1968) Variation in ferrous iron-magnesium distribution coefficients of metamorphic pyroxenes from Quairading, Western Australia. Contrib Mineral Petrol 19:239–259

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1978) Rock Forming Minerals, Vol 2A, Single Chain Silicates. John Wiley and Sons

  • De Waard D (1969) Facies series and P-T conditions of metamorphism in the Adirondack Mountains. Koninkel Nederl Akademie von Wetenschappen-Amsterdam, Proceedings, Series B 72, 2:124–131

    Google Scholar 

  • Ford WE, Bradley WM (1913) Pyroxmangite, a new member of the pyroxene group and its alteration product, skemmatite. Am J Sci 36:169–174

    Google Scholar 

  • Gordon WA, Peacor DR, Brown PE, Essene EJ, Allard LF (1980) Exsolution relationships in a clinopyroxene of average composition Ca0.43Mn0.69Mg0.82Si2O6 from Balmat, New York: X-ray diffraction and scanning transmission electron microscopy. Am Mineral (in press)

  • Henderson EP, Glass JJ (1936) Pyroxmangite, new locality: Identity of sobralite and pyroxmangite. Am Mineral 21:273–294

    Google Scholar 

  • Hietanen A (1938) On the petrology of Finnish quartzites. Bull Comm Geol Finlande 21:1–119

    Google Scholar 

  • Hodgson CJ (1975) The geology and geological development of the Broken Hill Lode, in the New Broken Hill Consolidated Mine, Australia: Part II: Mineralogy. J Geol Soc Aust 22:33–50

    Google Scholar 

  • Huffman KS, Essene EJ (1978) Reevaluation of the orthopyroxene isograd, northwest Adirondacks (abstr). Geol Soc Am Abstr Progr 10:423

    Google Scholar 

  • Huntington JC (1975) Mineralogy and petrology of metamorphosed iron-rich beds in the lower Devonian Littleton Formation, Orange Area, Massachusetts. University of Massachusetts 19:1–106

    Google Scholar 

  • Ito J (1972) Rhodonite-pyroxmangite peritectic along the join MnSiO3-MgSiO3 in air. Am Mineral 57:865–876

    Google Scholar 

  • Jaffe HW, Robinson P, Tracy RJ (1978) Orthoferrosilite and other iron-rich pyroxenes in microperthite gneiss of the Mount Marcy area, Adirondack Mountains. Am Mineral 63:1116–1136

    Google Scholar 

  • Kobayashi H (1977) Kanoite (Mn2+, Mg)2Si2O6, a new clinopyroxene in the metamorphic rocks from Tatehira, Oshima Peninsula, Hokkaido, Japan. J Geol Soc Japan 83:537–542

    Google Scholar 

  • Klein C (1966) Mineralogy and petrology of the metamorphosed Wabush Iron Formation, southwestern Labrador. J Petrol 7:246–305

    Google Scholar 

  • Krogh EJ (1977) Origin and metamorphism of iron formations and associated rocks, Lofoten-Vesteralen, N. Norway. I. The Vestpolltind Fe-Mn deposit. Lithos 10:243–255

    Google Scholar 

  • Lamb CL, Lindsley DH, Grover JE (1972) Johannsenite-bustamite: inversion and stability range (abstr). Geol Soc Am Abstr Progr 4:571–572

    Google Scholar 

  • Lea ER, Dill DB (1968) Zinc deposits of the Balmat-Edwards District, New York. In:Ridge JD (ed) Ore deposits of the United States, 1933–1967. Am Inst Mining Engineers, New York, pp 20–48

    Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Am Mineral 63:1023–1053

    Google Scholar 

  • Lee DE (1955) Mineralogy of some Japanese manganese ores. Stanford University Press 5:1–65

    Google Scholar 

  • Lindsley DH, Brown GM, Muir ID (1969) Conditions of the ferrowollastonite-ferrohedenbergite inversion in the Skaergaard intrusion, east Greenland. Pyroxenes and Amphiboles: Crystal Chemistry and Phase Petrology. Mineral Soc Am Spec Publ 2:193–201

    Google Scholar 

  • Lindsley DH, Burnham CW (1970) Pyroxferroite: Stability and X-ray crystallography of synthetic Ca0.15Fe0.85SiO3 pyroxenoid. Science 168:364–367

    Google Scholar 

  • Lindsley DH, Munoz JL (1969) Subsolidus relations along the join hedenbergite-ferrosilite. Am J Sci (Schairer Vol) 257A:295–324

    Google Scholar 

  • Maresch WV, Mottana A (1976) The pyroxmangite-rhodonite transformation for the MnSiO3 composition. Contrib Mineral Petrol 55:69–79

    Google Scholar 

  • Mason B (1973) Manganese silicate minerals from Broken Hill, NSW. J Geol Soc Aust 20:397–404

    Google Scholar 

  • Mason B (1975) Compositional limits of wollastonite and bustamite. Am Mineral 60:209–212

    Google Scholar 

  • Matsueda H (1973) Iron-wollastonite from the Sampo mine showing properties distinct from those of wollastonite. Mineral J 7:180–201

    Google Scholar 

  • Matsueda H (1974) Immiscibility gap in the system CaSiO3-CaFe-Si2O6 at low temperatures. Mineral J 7:327–343

    Google Scholar 

  • Morimoto N, Koto K, Shinohara T (1966) Oriented transformation of johannsenite to bustamite. Mineral J Japan 5:44–64

    Google Scholar 

  • Morimoto N, Tokonami M (1969) Domain structure of pigeonite and clinoenstatite. Am Mineral 54:725–740

    Google Scholar 

  • Nesbitt BE, Essene EJ (1980) Metamorphic thermometry and barometry of a portion of the Southern Blue Ridge Province. Am J Sci (in press)

  • Ohashi Y, Finger LW (1978) The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite and the pectolite-schizolite-serandite series. Am Mineral 63:274–288

    Google Scholar 

  • Ohashi Y, Finger LW (1975) Pyroxenoids: a comparison of refined structures of rhodonite and pyroxmangite. Carnegie Inst Washington Yearb 74:564–569

    Google Scholar 

  • Ohashi Y, Kato A, Matsubara S (1975) Pyroxenoids: A variation in chemistry of natural rhodonites and pyroxmangites. Carnegie Inst Washington Yearb 74:561–564

    Google Scholar 

  • Peacor DR, Essene EJ, Brown PE, Winter GA (1978) The crystal chemistry and petrogenesis of a magnesian rhodonite. Am Mineral 63:1137–1142

    Google Scholar 

  • Peters T, Schwender H, Tromsdorff V, Sommerauer J (1978) Manganese pyroxenoids and carbonates: Critical phase relations in metamorphic assemblages from the Alps. Contrib Mineral Petrol 66:383–388

    Google Scholar 

  • Peters T, Valarelli JV, Coutinho JMV, Sommerauer J, von Raumer J (1977) The manganese deposits of Buritirama (Para, Brazil). Schweiz Mineral Petrogr Mitt 57:313–327

    Google Scholar 

  • Rapoport PA, Burnham CW (1972) Structural chemistry of bustamite-type pyroxenoids on the wollastonite-hedenbergite join (abstr.). Geol Soc Am Abstr Progr 7:632–633

    Google Scholar 

  • Ross M, Papike JJ, Shaw KW (1969) Exsolution textures in amphiboles as indicators of subsolidus thermal histories. Pyroxenes and Amphiboles: Crystal Chemistry and Phase Petrology. Mineral Soc Am Spec Publ 2:275–299

    Google Scholar 

  • Rutstein MS (1971) Re-examination of the wollastonite-hedenbergite (CaSiO3-CaFeSi2O6) equilibria. Am Mineral 56:2040–2052

    Google Scholar 

  • Rutstein MS, White WB (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. Am Mineral 56:877–887

    Google Scholar 

  • Shimazaki H, Bunno M (1978) Subsolidus skarn equilibria in the system CaSiO3-CaMgSi2O6-CaFeSi2O6-CaMnSi2O6. Can Mineral 16:539–545

    Google Scholar 

  • Smith D (1972) Stability of iron-rich pyroxene in the system Ca-SiO3-FeSiO3-MgSiO3. Am Mineral 57:1413–1428

    Google Scholar 

  • Sundius N (1931) On the triclinic manganiferous pyroxenes. Am Mineral 16:411–429, 488–518

    Google Scholar 

  • Tilley CE (1937a) Pyroxmangite from Inverness-Shire, Scotland. Am Mineral 22:720–727

    Google Scholar 

  • Tilley CE (1937b) Wollastonite solid solutions from Scawt Hill, Co. Antrim. Mineral Mag 24:569–572

    Google Scholar 

  • Tilley CE (1948) On iron-wollastonites in contact skarns: an example from Skye. Am Mineral 33:736–738

    Google Scholar 

  • Valley JW, Bohlen SR (1979) A petrogenetic grid for Adirondack metamorphism (abstr.). Geol Soc Am Abstr Progr 11:57

    Google Scholar 

  • Winter GA, Essene EJ, Peacor DR (1980) The mineralogy and petrology of the manganese deposit near Bald Knob, North Carolina. I. Mn-carbonates and-pyroxenoids. Am Mineral (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 363, from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor MI 48109, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, P.E., Essene, E.J. & Peacor, D.R. Phase relations inferred from field data for mn pyroxenes and pyroxenoids. Contr. Mineral. and Petrol. 74, 417–425 (1980). https://doi.org/10.1007/BF00518121

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00518121

Keywords

Navigation