Skip to main content
Log in

Transport properties of nonelectrolyte liquid mixtures—II. Viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100‡C at pressures up to the freezing pressure or 500 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Viscosity coefficients measured with an estimated accuracy of 2% using a self-centering falling body viscometer are reported for n-hexane, n-hexadecane, and four binary mixtures at 25, 50, 75, and 100‡C at pressures up to the freezing pressure or 500 MPa. The data for a given composition at different temperatures and pressures are very satisfactorily correlated by a plot of Ή, defined as 104 ηV 2/3/(MT)1/2 in the cgs system of units, or generally, 9.118×107 η V 2/3/(MRT)1/2, versus log V′, as suggested by the hard-sphere theories, where V′ = V · V 0(T R)/V 0(T) and V 0 represents the close-packed volume at temperature T and reference temperature T R . The experimental results for all compositions are fitted, generally well within the estimated uncertainty, by the equation

$$\ln \eta ' = {\text{ - 1}}{\text{.0 + }}\frac{{BV_0 }}{{V - V_0 }}$$
(1)

where B and V 0 are temperature and composition dependent. Values of B and V 0 for the mixtures are simply related to values for the pure liquids, and viscosity coefficients calculated on the basis of this equation have an estimated accuracy of 3%. The effectiveness of the recently recommended empirical Grunberg and Nissan equation is investigated. It is found that the parameter G is pressure dependent, as well as composition dependent, but is practically temperature independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  2. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53: 3813 (1970).

    Google Scholar 

  3. E. M. Gosling, I. R. McDonald, and K. Singer, Mol. Phys. 26: 1475 (1973).

    Google Scholar 

  4. J. H. Dymond and K. J. Young, Int. J. Thermophys. 1(4): 331 (1980).

    Google Scholar 

  5. L. Grunberg and A. H. Nissan, Nature (Lond.) 164: 799 (1949).

    Google Scholar 

  6. J. B. Irving, N. E. L. Report No. 631 (National Engineering Laboratory, East Kilbride, Glasgow, U.K., 1977).

    Google Scholar 

  7. J. D. Isdale and C. M. Spence, N. E. L. Report No. 592 (National Engineering Laboratory, East Kilbride, Glasgow, U.K., 1975).

    Google Scholar 

  8. J. H. Dymond, K. J. Young, and J. D. Isdale, J. Chem. Thermodyn. 11: 887 (1979).

    Google Scholar 

  9. D. W. Brazier and G. R. Freeman, Can. J. Chem. 47: 893 (1969).

    Google Scholar 

  10. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 61: 57 (1926).

    Google Scholar 

  11. J. D. Isdale, J. H. Dymond, and T. A. Brawn, High Temp-High Press. 11: 571 (1979).

    Google Scholar 

  12. ASME Pressure Viscosity Report (New York, 1953), Vol. 1.

  13. E. L. Heric and J. G. Brewer, J. Chem. Eng. Data 12: 574 (1967).

    Google Scholar 

  14. American Petroleum Institute Research Project 44 (Texas A & M University, 1942; amended, 1955).

  15. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, New York, 1939), Chap. 16.

    Google Scholar 

  16. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51: 635 (1969).

    Google Scholar 

  17. Ref. [1]. Chap. 1.

    Google Scholar 

  18. D. Chandler, J. Chem. Phys. 62: 1358 (1975).

    Google Scholar 

  19. J. H. Dymond, J. Chem. Phys. 60: 969 (1974).

    Google Scholar 

  20. J. P. J. Michels and N. J. Trappeniers, Proc. 7th Int. AIRAPT High Pressure Conf., Le Creusot, France, Pergamon, (Elmsford, N.Y., 1980).

    Google Scholar 

  21. L. A. Woolf and K. R. Harris, Chem. Phys. 32: 349 (1978).

    Google Scholar 

  22. J. H. Dymond and T. A. Brawn, Proc. 7th Symp. Thermophys. Prop., (Am. Soc. Mech. Engrs., New York, 1977), p. 660.

    Google Scholar 

  23. A. F. Collings and E. McLaughlin, Trans. Faraday Soc. 67: 340 (1971).

    Google Scholar 

  24. M. A. McCool and L. A. Woolf, J. C. S. Faraday 1 68: 1489 (1972).

    Google Scholar 

  25. H. J. Parkhurst, Jr., and J. Jonas, J. Chem. Phys. 63: 2705 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dymond, J.H., Young, K.J. & Isdale, J.D. Transport properties of nonelectrolyte liquid mixtures—II. Viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100‡C at pressures up to the freezing pressure or 500 MPa. Int J Thermophys 1, 345–373 (1980). https://doi.org/10.1007/BF00516563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00516563

Key words

Navigation