Skip to main content
Log in

Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi

  • Microbiology of Sewage and Industrial Wastes
  • Published:
European journal of applied microbiology and biotechnology Aims and scope Submit manuscript

Summary

In laboratory and semi-industrial scale experiments the influence of the substrate water content, temperature, and incubation time on the progress of solid state fermentation of straw colonized by white rot fungi was investigated. The parameters used to evaluate the fermentation process were degradation of total organic matter and lignin, in vitro digestibility, the content of water soluble substances in the substrate and the pH.

The degradation of total organic matter was species specific. Only Trametes hirsuta enhanced the degradation at elevated temperature (30 °C). With Abortiporus biennis, Ganoderma applanatum, and Pleurotus serotinus, elevated temperature had and adverse effect. Prolonged incubation only improved degradation of straw by the relatively slowgrowing fungi Ganoderma applanatum, Lenzites betulina, and Pleurotus sajor caju.

Elevated temperature and prolonged incubation shifted the relative degradation rates in favour of total organic matter degradation. With Ganoderma applanatum, Pleurotus ostreatus, and Pleurotus serotinus lignin degradation, even on an absolute scale, was less at 30 °C than at 22 °C.

In general, the in vitro digestibility also decreased, when the incubation time and temperature were raised. With Ganoderma applanatum the in vitro digestibility dropped below the value of the sterile straw control.

Solid state fermentation of straw was at an optimum at a medium water content of 75 ml/25 g of substrate. However, most of the fungi tested could digest straw over a wide range of water content. At higher water contents (125–150 ml/25 g of substrate) an increased production of aerial mycelium was observed.

In semi-industrial batch experiments (40 kg) with Abortiporus biennis the in vitro digestibility dropped below the reference value for sterile straw during the first 19 days of incubation. Later, the in vitro digestibility again rose and reached its optimum after about 60 days. The in vitro digestibility in the semi-industrial experiments was always lower than in the laboratory experiments (+9% and +25%, respectively).

In long term experiments (2.5 kg batches, 8 months of incubation) very different values for the in vitro digestibility were found, and these depended on the fungus used (Abortiporus biennis, +16%; Pleurotus ostreatus, +4%; and Ganoderma applanatum, −27%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammer U (1963) Forstwiss Centralbl 82:360–391

    Google Scholar 

  • Barrows I, Seal KJ, Eggins HDW (1979) Biodegradation of barley straw by Coprinus cinereus for the production of ruminent feed in: Grossbard E (3d) Straw decay and its effect on utilization and disposal. John Wiley & Sons LTD, Chichester, New York, Brisbane, Toronto, pp 147–154

    Google Scholar 

  • Bavendamm W, Reichelt H (1939) Arch Mikrobiol 10:486–544

    Google Scholar 

  • Beck K (1977) Der Champignon 193:17–27

    Google Scholar 

  • Francescuti B (1972) Verfahren und Vorrichtungen zum Anbau von Pilzen. Deutsches Patentamt (Offenlegungsschrift) 2251 90

  • Gerrits JPG (1975) Champignoncultuur 19:254–260

    Google Scholar 

  • Griffin DM (1977) Ann Rev Phytopathol 15:319–329

    Google Scholar 

  • Halse OM (1926) Papier Journalen 10:121–126

    Google Scholar 

  • Hartley RD, Jones EC, King NJ, Smith GA (1974) J Sci Food Agric 25:433–437

    Google Scholar 

  • Henke D (1979) Mushroom Sci X:137–147

    Google Scholar 

  • Kirk KT, Moore WE (1972) Wood Fiber 4:72–79

    Google Scholar 

  • Lehmann KB, Scheibe E (1923) Arch Hyg 92:89–108

    Google Scholar 

  • Letham MJ (1979) Pretreatment of barley straw with white rot fungi to improve digestion. In: Grossbard E (ed) Straw decay and its effect on utilization and disposal. John Wiley & Sons LTD, Chichester, New York, Brisbane, Toronto, p 131–137

    Google Scholar 

  • Lindenfelser LA, Detroy RW, Ramstack IM, Worden KA (1979) Dev Ind Microbiol 20:541–551

    Google Scholar 

  • Rypáček V (1952) Spysy vyd Přírodovědeckou fakultou, Masarykovy University v Brně 335:49–7

    Google Scholar 

  • Rypáček V (1966) Biologie holzzerstörender Pilze, VEB G Fisher Verlag, Jena

    Google Scholar 

  • Scháněl L, Rypáček V (1958) Spysy vyd Přírodovědeckou fakultou Masarykova University v Brně 336–396

  • Tilley JMA, Terry RA (1963) J Br Grassl Soc 18:104–111

    Google Scholar 

  • Zadražil F (1976) Z Acker Pflanzenbau 142:44–52

    Google Scholar 

  • Zadražil F (1977) Eur J Appl Microbiol Biotechnol 4:273–281

    Google Scholar 

  • Zadražil F (1979) Mushroom Sci X:231–241

    Google Scholar 

  • Zadražil F, Brunnert H (1979) Z Pflanzenernaehr Bodenkd 142:446–455

    Google Scholar 

  • Zadražil F, Brunnert H (1980) Eur J Appl Microbiol Biotechnol 9:37–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadražil, F., Brunnert, H. Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi. European J. Appl. Microbiol. Biotechnol. 11, 183–188 (1981). https://doi.org/10.1007/BF00511259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00511259

Keywords

Navigation