Skip to main content
Log in

Evidence for a direct action of amphetamine on dopamine metabolism in the rat substantia Nigra in vivo

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The intraperitoneal administration of d-amphetamine (0.2–2.5 mg/kg) decreases dihydroxyphenylacetic acid (DOPAC) content not only in the caudate nucleus but also in the substantia nigra. This effect persists both in the substantia nigra and in the caudate nucleus after loss of dopamine-sensitive adenylate cyclase and presumably of dopamine receptors, induced by intrastriatal injection of kainic acid. These results indicate that the effect of amphetamine on DOPAC levels in the nigra is not mediated through a strionigral feedback loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., Bunney, B. S.: Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Frontiers in Catecholamine Research (Usdin, E., Snyder, S., eds.), pp. 641–648. Oxford: Pergamon Press 1973

    Google Scholar 

  • Argiolas, A., Fadda, F., Stefanini, E., Gessa, G. L.: A simple radioenzymatic method for determination of picogram amounts of 3,4-dihydroxyphenylacetic acid (DOPAC) in the rat brain. J. Neurochem. 29, 599–601 (1977)

    Google Scholar 

  • Besson, M. J., Cheramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug-induced release from caudate nucleus in the cat. Brain Res. 32, 407–424 (1971)

    Google Scholar 

  • Bunney, B. S., Aghajanian, G. K.: Electrophysiological effects of amphetamine on dopaminergic neurones. In: Frontiers in Catecholamine Research (Usdin, E., Snyder, S., eds.), pp. 957–962. Oxford: Pergamon Press 1973

    Google Scholar 

  • Bunney, B. S., Aghajanian, G. K.: d-amphetamine-induced inhibition of central dopaminergic neurones: mediation by striatonigral feedback pathway. Science 192, 391–393 (1976)

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine of haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 20, 140–144 (1963)

    Google Scholar 

  • Chiueh, C. C., Moore, K. E.: Blockade by reserpine of methylphenidate-induced release of brain dopamine. J. Pharmacol. Exp. Ther. 193, 559–563 (1975)

    Google Scholar 

  • Corsini, G. U., Del Zompo, M., Manconi, S., Piccardi, M. P., Onali, P. L., Mangoni, A., Gessa, G. L.: Evidence for dopamine receptors in the human brain mediating sedation and sleep. Life Sci. 20, 1613–1618 (1977)

    Google Scholar 

  • Coyle, J. T., Schwarcz, R.: Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature 263, 244–246 (1976)

    Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Vargiu, L., Argiolas, A., Gessa, G. L.: Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 264, 564–567 (1976)

    Google Scholar 

  • Di Chiara, G., Olianas, M., Del Fiacco, M., Spano, P. F., Tagliamonte, A.: Intranigral kainic acid is evidence that nigral nondopaminergic neurones control posture. Nature 268, 743–745 (1977a)

    Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Spano, P. F., Gessa, G. L.: Haloperidol increases and apomorphine decreases striatal dopamine metabolism after destruction of striatal dopamine-sensitive adenylate cyclase by kainic acid. Brain Res. 130, 374–382 (1977b)

    Google Scholar 

  • Ferris, R. M., Tang, F. L. M., Maxwell, R. A.: A comparison of the capacities of isomers of amphetamine, deoxypipradol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparation of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J. Pharmacol. Exp. Ther. 181, 407–416 (1972)

    Google Scholar 

  • Gale, K., Guidotti, A., Costa, E.: Dopamine-sensitive adenylate cyclase: location in substantia nigra. Science 195, 503–505 (1977)

    Google Scholar 

  • Groves, P. M., Wilson, C. J., Young, S. J., Rebec, G. V.: Self-inhibition by dopaminergic neurons. Science 190, 522–529 (1975)

    Google Scholar 

  • Groves, P. M., Young, S. J., Wilson, C. J.: Self-inhibition by dopaminergic neurons: distruption by (±)-methyl-p-tyrosine pretreatment or anterior diencephalic lesions. Neuropharmacology 15, 755–762 (1976)

    Google Scholar 

  • Holmes, J. C., Rutledge, C. O.: Effects of the d- and l-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of the rat brain. Biochem. Pharmacol. 25, 447–451 (1976)

    Google Scholar 

  • Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharmac. Pharmacol. 24, 744–747 (1974)

    Google Scholar 

  • Korf, J., Zieleman, M., Westerink, B. H. C.: Dopamine release in substantia nigra? Nature 260, 257–258 (1976)

    Google Scholar 

  • Nieoullon, A., Cheramy, A., Glowinski, J.: Release of dopamine “in vitro” from cat substantia nigra. Nature 266, 375–377 (1977)

    Google Scholar 

  • Paden, C., Wilson, C. J., Groves, P. M.: Amphetamine-induced release of dopamine from the substantia nigra “in vitro”. Life Sci. 19, 1499–1506 (1976)

    Google Scholar 

  • Palkovits, M., Brownstein, M., Saveedra, J. M., Axelrod, J.: Norepinephrine and dopamine content of hypothalamic nuclei of the rat. Brain Res 77, 137–149 (1974)

    Google Scholar 

  • Renshaw, D. C.: In: The hyperactive child, pp. 36–40. Chicago: Nelson-Hall 1974

    Google Scholar 

  • Roffler-Tarlov, S., Sharman, D. F., Tegerdine, P.: 3,4-Dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid in the mouse striatum: a reflection of intra- and extra-neuronal metabolism of dopamine? Br. J. Pharmacol. 42, 343–351 (1971)

    Google Scholar 

  • Schwarcz, R., Coyle, J. T.: Striatal lesions with kainic acid: neurochemical characteristics. Brain Res. 127, 235–249 (1977)

    Google Scholar 

  • Spano, P. F., Trabucchi, M., Di Chiara, G.: Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum. Science 196, 1343–1345 (1977)

    Google Scholar 

  • Spano, P. F., Di Chiara, G., Tonon, G., Trabucchi, M.: A dopamine-stimulated adenylate cyclase in rat substantia nigra. J. Neurochem. 27, 1565–1568 (1976)

    Google Scholar 

  • Tecce, J. J., Cole, J. O.: Amphetamine effects in man: paradoxical drowsiness and lowered electrical brain activity (CNV). Science 185, 451–453 (1974)

    Google Scholar 

  • Weiss, B., Laties, U. G.: Enhancement of human performance by caffeine and the amphetamines. Pharmacol. Rev. 14, 1–36 (1962)

    Google Scholar 

  • Westerink, B. H. C., Korf, J.: Determination of nanogram amounts of homovanillic acid in the nervous central system with a rapid semiautomated fluorometric method. Biochem. Med. 12, 106–115 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argiolas, A., Fadda, F., Stefanini, E. et al. Evidence for a direct action of amphetamine on dopamine metabolism in the rat substantia Nigra in vivo. Naunyn-Schmiedeberg's Arch. Pharmacol. 301, 171–174 (1978). https://doi.org/10.1007/BF00507033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00507033

Key words

Navigation