Skip to main content
Log in

Failure of an angiotensin II antagonist to influence isoprenaline-induced antidiuresis in rats

  • Original Articles
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The purpose of this study was to elucidate the role of angiotensin II in isoprenaline-induced antidiuresis by use of the competitive angiotensin II antagonist saralasin. Isoprenaline is known to enhance the formation of angiotensin II. Since angiotensin II has been shown to increase proximal tubular salt and volume reabsorption and to decrease renal fluid and salt excretion the renal effects of isoprenaline might, at least partly, be mediated by angiotensin II.

Isoprenaline, infused at 0.1 μg/kg·min i. v. into anaesthetized rats, led to a marked decrease of urine flow, sodium and potassium excretion and to an increase in urinary osmolality, confirming previous data. Effective renal plasma flow increased significantly. Immediately after onset of the isoprenaline infusion a transient small fall in GFR was observed. On continuation of the infusion, GFR recovered, but marked antidiuresis persisted. Changes in renal hemodynamics, therefore, can be excluded as being responsible of the antidiuretic effect. Saralasin, infused at 6 μg/kg· min i.v., did not affect isoprenaline-induced antidiuresis, antinatriuresis, antikaliuresis, and the increase in urinary osmolality, but prevented the rise in renal plasma flow observed during isoprenaline infusion, probably as a consequence of a weak angiotensin II-like effect of saralasin on renal vessels.

It is concluded that angiotensin II does not play a role in isoprenaline-induced antidiuresis. The results are compatible with the view that β-adrenoceptor stimulation may directly affect the tubular handling of water and salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bello-Reuss E (1980) Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol 238:F347-F352

    Google Scholar 

  • Botting RM, Lockett MF (1961) Threshold effect of subcutaneous adrenaline, noradrenaline and isoprenaline on water diuresis in rat. Arch Int Physiol Biochim 69:36–45

    Google Scholar 

  • Botting RM, Farmer JB, Lockett MF (1961) The effect of subcutaneous adrenaline and isoprenaline on the excretion of electrolytes by rats. Arch Int Physiol Biochim 69:203–212

    Google Scholar 

  • Castellion AW, Fulton RW (1979) Preclinical pharmacology of saralasin. Kidney International 15:S11-S19

    Google Scholar 

  • Culpepper RM (1984) Multiple regulators of adenylate cyclase (AC) in mouse medullary thick ascending limb (mTAL): significance for NaCl transport. Clin Res 32:65A

    Google Scholar 

  • Farmer JB, Lockett MF (1961) The effect of small subcutaneous doses of adrenaline and isoprenaline on the excretion of water and isotonic solutions of sodium and potassium chloride by rats. Arch Int Physiol Biochim 69:277–283

    Google Scholar 

  • Führ J, Kaczmarczyk J, Krüttgen CD (1955) Eine einfache Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchung bei Stoffwechselgesunden und Diabetikern. Klin Wschr 33:729–730

    Google Scholar 

  • Fülgraff G, Meiforth A, Osswald H, Heidenreich O (1968) Die Wirkung von α- und β-Sympathomimetica auf die lokale Transportkapazität im proximalen Konvolut von Rattennieren. Naunyn-Schmiedeberg's Arch Pharmacol 260:116

    Google Scholar 

  • Fülgraff G, Heidenreich O, Heintze K, Osswald H (1969) Die Wirkung von α- und β-Sympathomimetica und Sympatholytica auf die renale Exkretion und Resorption von Flüssigkeit und Elektrolyten in Ausscheidungs- und Mikropunktionsversuchen an Ratten. Naunyn-Schmiedeberg's Arch Pharmacol 262:295–308

    Google Scholar 

  • Gavendo S, Kapuler S, Serban I, Iaina A, Bend-David, E, Eliabou H (1980) β-Adrenergic receptors in kidney tubular cell membrane in the rat. Kidney Internat 17: 764–770

    Google Scholar 

  • Greven J (1974a) Evidence for redistribution of filtrate among nephrons after β-adrenergic stimulation and blockade. Nauyn-Schmiedeberg's Arch Pharmacol 282:171–180

    Google Scholar 

  • Greven J (1974b) Clearance-, Mikropunktions- und Stoffwechselversuche zur renalen Wirkung von Sympathomimetica und Sympatholytica. Habilitationsschrift Aachen

  • Greven J (1974c) Fluid reabsorption in the loops of Henle and the distal convoluted tubules of the rat kidney after β-adrenergic stimulation and blockade. Naunyn-Schmiedeberg's Arch Pharmacol 285:R23

    Google Scholar 

  • Greven J, Klein H (1977) Action of the competitive angiotensin II antagonist saralasin during the initial phase of glycerol-induced acute renal failure of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 301:139–143

    Google Scholar 

  • Heidenreich O, Fülgraff G, Laaff H, Balshüseman E (1969) Die Wirkung von β-Sympathomimetica und Sympatholytica auf die Nierenfunktion von Hunden. Naunyn-Schmiedeberg's Arch Pharmacol 263:439–449

    Google Scholar 

  • Heidenreich O, Laaf H, Fülgraf G, Balshüsemann E (1966) Die Wirkung von Orciprenalin, Isoprenalin und Propranolol auf die Nierenfunktion des Hundes. Naunyn-Schmiedeberg's Arch Pharmacol 255:23–24

    Google Scholar 

  • Heintze K, Heidenreich O (1968) Die Wirkung von Sympathomimetica und β-Receptorenblockern auf die Nierenfunktion von Ratten. Naunyn-Schmiedeberg's Arch Pharmacol 260:137–138

    Google Scholar 

  • Lees P (1968) The influence of β-adrenoceptive receptor blocking agents on urinary function in the rat. Brit J Pharmacol 34:429–444

    Google Scholar 

  • Lees P, Lockett MF (1963) A study of the β-adrenoceptors in rat kidneys. Brit J Pharmacol 20:135–138

    Google Scholar 

  • Lehr D, Mallow J, Krukowski M (1967) Copious drinking and simultaneous inhibition of urine flow elicited by β-adrenergic stimulation and α-adrenergic stimulation. J Pharmacol Exp Ther 158:150–163

    Google Scholar 

  • Levi J, Grinblat J, Kleeman CR (1971) Effect of isoproterenol on water diuresis in rats with congenital diabetes insipidus. Am J Physiol 221:1728–1732

    Google Scholar 

  • McDonald KM, Kuruvila KC, Aisenbrey GA, Schrier RW (1977) Effect of α-and β-adrenergic stimulation on renal water excretion and medullary tissue cyclic AMP in intact and diabetes insipidus rats. Kidney Int 12:96–103

    Google Scholar 

  • Navar LG, Langford HG (1974) Effects of angiotensin on the renal circulation. In: Page IH, Bumpus FM (ed) Handbuch der experimentellen Pharmakologie Angiotensin, vol 37. Springer, Berlin Heidelberg New York, pp 455–474

    Google Scholar 

  • Osswald H, Greven J (1980) Effects of adrenergic activators and inhibitors on kidney function. In: Szekeres L (ed) Handbook of experimental pharmacology, vol 54/II. Springer, Berlin Heidelberg New York, pp 243–288

    Google Scholar 

  • Peskar B, Leodolter S, Hertting G (1969) Die Wirkung von Hydralazin und Dihydralazin sowie anderer blutdrucksenkender Pharmaka auf Wasseraufnahme und-abgabe bei Ratten. Naunyn-Schmiedeberg's Arch Pharmacol 264:292–293

    Google Scholar 

  • Polhemus RE, Hall DA (1981) Effect of catecholamines on the potential difference and chloride efflux in the mouse thick ascending limb of Henle's loop. Kidney Int 19:253

    Google Scholar 

  • Schuster VL, Kokko JP, Jacobson HR (1984) Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest 73:507–515

    Google Scholar 

  • Shibouta Y, Inadas Y, terashita Z, Nishikawa K, Kikuchi S (1978) Antidiuresis induced by β 1- and β 2-adrenergic agonists in ethanol-anesthetized rats. Europ J Pharmacol 47:149–159

    Google Scholar 

  • Smith HW (1956) Principles of renal physiology. New York, Oxford University Press

    Google Scholar 

  • Spinelli F, Walther A (1978) Biphasic tubular effect of angiotensin II and Sar1 Ala8 angiotensin II on net water and sodium reabsorption in the proximal tubule of the rat kidney. Kidney Int 13:532 (Abstr)

    Google Scholar 

  • Steiner RW, Tucker BJ, Blantz RC (1979) Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest 64:503–512

    Google Scholar 

  • Steven K (1974) Effect of peritubular infusion of angiotensin II on rat proximal nephron function. Kidney Int 6:73–80

    Google Scholar 

  • Summers RJ, Kuhar MJ (1983) Autoradiographic localization of β-adrenoceptors in rat kidney. Europ J Pharmacol 91:305–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greven, J., Pantel, J. Failure of an angiotensin II antagonist to influence isoprenaline-induced antidiuresis in rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 332, 271–275 (1986). https://doi.org/10.1007/BF00504866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00504866

Key words

Navigation