Skip to main content
Log in

On combination rules for molecular van der waals potential-well parameters

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Combination rules are proposed for the depth and position parameters of the effective potential well for interactions between molecules. They are an extension, by the introduction of a rigid-core parameter that can be determined independently from known dispersion coefficients, of the Tang-Toennies rules for interactions between noble-gas atoms. Such rules permit the calculation of many mixture properties of molecular gases via known correlation equations, without involving any attempt to predict the entire anisotropic intermolecular potential. The rules are tested with the few known potentials, and with more extensive experimental data on mixture properties, and appear to work satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Tang and J. P. Toennies, Z. Phys. D1:91 (1986).

    Google Scholar 

  2. A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys. Chem. Ref. Data 16:445 (1987).

    Google Scholar 

  3. J. Kestin, H. E. Khalifa, S. T. Ro, and W. A. Wakeham, Physica 88A:242 (1977).

    Google Scholar 

  4. T. Kihara, Rev. Mod. Phys. 25:831 (1963); Adv. Chem. Phys. 5:147 (1963).

    Google Scholar 

  5. T. L. Gilbert, J. Chem. Phys. 49:2640 (1968).

    Google Scholar 

  6. F. T. Smith, Phys. Rev. A5:1708 (1972).

    Google Scholar 

  7. T. L. Gilbert, O. C. Simpson, and M. A. Williamson, J. Chem. Phys. 63:4061 (1975).

    Google Scholar 

  8. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964), pp. 168, 567.

    Google Scholar 

  9. H. L. Kramer and D. R. Herschbach, J. Chem. Phys. 53:2792 (1970).

    Google Scholar 

  10. G. D. Zeiss and W. J. Meath, Mol. Phys. 33:1155 (1977).

    Google Scholar 

  11. A. J. Thakker, J. Chem. Phys. 81:1919 (1984).

    Google Scholar 

  12. G. Ihm, M. W. Cole, F. Toigo, and G. Scoles, J. Chem. Phys. 87:3995 (1987).

    Google Scholar 

  13. B. Najafi, E. A. Mason, and J. Kestin, Physica 119A:387 (1983).

    Google Scholar 

  14. B. Brunetti, G. Liuti, E. Luzzatti, F. Pirani, and F. Vecchiocattivi, J. Chem. Phys. 74:6734 (1981).

    Google Scholar 

  15. R. T. Pack, J. J. Valentini, and J. B. Cross, J. Chem. Phys. 77:5486 (1982).

    Google Scholar 

  16. M. Faubel, K. H. Kohl, J. P. Toennies, and F. Gianturco, J. Chem. Phys. 78:5629 (1983).

    Google Scholar 

  17. R. T. Pack, E. Piper, G. A. Pfeffer, and J. P. Toennies, J. Chem. Phys. 80:4940 (1984).

    Google Scholar 

  18. M. J. O'Loughlin, B. P. Reid, and R. K. Sparks, J. Chem. Phys. 83:5647 (1985).

    Google Scholar 

  19. B. P. Reid, M. J. O'Loughlin, and R. K. Sparks, J. Chem. Phys. 83:5656 (1985).

    Google Scholar 

  20. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces (Oxford University Press, London/New York, 1981), Appendix 3.

    Google Scholar 

  21. J. M. Hellemans, J. Kestin, and S. T. Ro, Physica 65:362 (1973).

    Google Scholar 

  22. J. Kestin, H. E. Khalifa, S. T. Ro, and W. A. Wakeham, Physica 88A:242 (1977).

    Google Scholar 

  23. J. Kestin, Y. Kobayashi, and R. T. Wood, Physica 32:1056 (1966).

    Google Scholar 

  24. J. Kestin and S. T. Ro, Ber. Bunseges. Phys. Chem. 78:20 (1973).

    Google Scholar 

  25. J. Bohemen and J. H. Purnell, J. Chem. Soc. 360 (1961).

  26. C. S. Ellis and J. N. Holsen, Ind. Eng. Chem. Fund. 8:787 (1969).

    Google Scholar 

  27. B. A. Ivakin and P. E. Suetin, Zh. Tekh. Fiz. 34:1115 (1964) [English translation in Sov. Phys.-Tech. Phys. 9:866 (1964)].

    Google Scholar 

  28. R. Paul and I. B. Srivastava, Indian J. Phys. 35:465 (1961).

    Google Scholar 

  29. P. E. Suetin, Teplo- i Massoperenos Izdatelstow Akad. Nauk BSSR Minsk 1:188 (1962) [English translation by A. L. Monks for Oak Ridge National Laboratory, Rep. ORNL-TR-316 (1964)].

    Google Scholar 

  30. R. D. Trengove, K. R. Harris, H. L. Robjohns, and P. J. Dunlop, Physica 131A:506 (1985).

    Google Scholar 

  31. V. F. Vyshenskaya and N. D. Kosov, Teplo- i Massoperenos Pervoe Vsesoyuznoe Soveshchanie Minsk: 181 (1961) [English translation by A. L. Monks for Oak Ridge National Laboratory, Rep. ORNL-TR-506 (1965)].

  32. R. E. Walker and A. A. Westenberg, J. Chem. Phys. 29:1147 (1958).

    Google Scholar 

  33. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley-Interscience, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bzowski, J., Mason, E.A. & Kestin, J. On combination rules for molecular van der waals potential-well parameters. Int J Thermophys 9, 131–143 (1988). https://doi.org/10.1007/BF00504005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00504005

Key words

Navigation