Skip to main content
Log in

Identity of esterase-22 and egasyn, the protein which complexes with microsomal β-glucuronidase

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Recent experiments have demonstrated that egasyn not only sequesters β-glucuronidase in microsomes by forming high molecular weight complexes with β-glucuronidase, but also has carboxyl esterase activity. We have found several new phenotypes of egasyn-esterase after electrophoresis and isoelectric focusing of liver homogenates and purified egasyn of inbred and wild mouse strains. Several phenotypes corresponded in relative mobility and relative isoelectric point among inbred strains to that recently reported for esterase-22 by Eisenhardt and von Deimling [(1982). Comp. Biochem. Physiol. 73B:719]. This genetic evidence, plus a wide variety of comparative biochemical and physiological data, indicates that egasyn is identical to esterase-22. Both parental types of egasyn isozymes are expressed in heterozygous F1 progeny, suggesting that alterations in the egasyn structural gene are responsible for the altered isoelectric points. Also, egasyn is a monomer since no new esterase bands appear in F1 progeny. The variants in isoelectric point of egasyn map at or near the egasyn (Eg) gene within the esterases of cluster 1 near Es-9 on chromosome 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belinsky, S. A., Kauffman, F. C., Sokolove, P. M., Tsukuda, T., and Thurman, R. G. (1984). Calcium-mediated inhibition of glucuronide production by epinephrine in the perfused rat liver. J. Biol. Chem. 2597705.

    Google Scholar 

  • Chapman, V. M., Paigen, K., Siracusa, L., and Womack, J. E. (1979). In Altman, P. L., and Katz, D. D. (eds.), Inbred and Genetically Defined Strains of Laboratory Animals, Part I. Mouse and Rat Federation of American Societies for Experimental Biology, Bethesda, Md., p. 83.

    Google Scholar 

  • Davisson, M., and Roderick, T. H. (1985). The mouse linkage map. Mouse News Lett. 737.

    Google Scholar 

  • Eisenhardt, E., and von Deimling, O. (1982). Interstrain variation of esterase-22, a new isozyme of house mouse. Comp. Biochem. Physiol. 73B719.

    Google Scholar 

  • Ganschow, R., and Bunker, B. G. (1970). Genetic control of glucuronidase in mice. Biochem. Genet. 4127.

    Google Scholar 

  • Ganschow, R., and Paigen, K. (1967). Separate genes determining the structure and intracellular location of hepatic glucuronidase. Proc. Natl. Acad. Sci. USA 58938.

    Google Scholar 

  • Hayashi, M., Nakajima, Y., and Fishman, W. H. (1964). The cytologic demonstration of β-glucuronidase employing naphthol AS-BI glucuronide and hexazonium pararosanline; A preliminary report. J. Histochem. Cytochem. 12293.

    Google Scholar 

  • Heymann, E. (1980). Carboxyl esterases and amidases. In Enzymatic Basis of Detoxification, Vol. II Academic Press, New York, pp. 291–323.

    Google Scholar 

  • Hilgers, J., and Arends, J. (1986). The novel immunological responses of the BALB/c mouse. In Potter, M. (ed.), Current Topics in Microbiology and Immunology Monograph on the “Wild Mouse in Immunology,” Proceedings of a meeting at the National Institutes of Health, Nov. 4–6, 1985, Springer-Verlag, New York.

    Google Scholar 

  • Karl, T. R., and Chapman, V. M. (1974). Linkage and expression of the Eg locus controlling inclusion of β-glucuronidase into microsomes. Biochem. Genet. 11367.

    Google Scholar 

  • Komma, D. J. (1963). Characteristics of the esterases of human cells grown in vitro. J. Histochem. Cytochem. 11619.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227680.

    Google Scholar 

  • Lipps, A., Ronai, A., and von Deimling, O. (1979). Esterase-7, a common constituent of numerous mouse tissues. Comp. Biochem. Physiol. 62B201.

    Google Scholar 

  • Lusis, A. J., and Paigen, K. (1977). In Ratazzi, M. C., Scandalios, J. G., and Whitt, G. S. (eds.), Isozymes: Current Topics in Biological and Medical Research, Vol. 2, pp. 63–106. Alan R. Liss, N.Y.

    Google Scholar 

  • Lusis, A. J., Tomino, S., and Paigen, K. (1976). Isolation, characterization and radioimmunoassay of murine egasyn, a protein stabilizing glucuronidase membrane binding. J. Biol. Chem. 2517752.

    Google Scholar 

  • Maurer, H. R. (1977). Disc Electrophoresis and Related Techniques of Polyacrylamide Gel Electrophoresis DeGruyter, New York.

    Google Scholar 

  • Medda, S., and Swank, R. T. (1985). Egasyn, a protein which determines the subcellular distribution of β-glucuronidase, has esterase activity. J. Biol. Chem. 26015802.

    Google Scholar 

  • Nash, H. R., and von Deimling, O. (1982). Kidney esterase of Mus musculus: Further polymorphism of esterase-6, esterase-9 and a new esterase, esterase-20. Biochem. Genet. 20537.

    Google Scholar 

  • Owens, J. W., Gammon, K. L., and Stahl, P. D. (1975). Multiple forms of β-glucuronidase in rat liver lysosomes and microsomes. Arch. Biochem. Biophys. 166258.

    Google Scholar 

  • Peters, J. (1982). Nonspecific esterases of Mus musculus. Biochem. Genet. 20585.

    Google Scholar 

  • Peters, J., and Nash, H. R. (1977). Polymorphisms of esterase 11 in Mus musculus, a further esterase locus on chromosome 8. Biochem. Genet. 15217.

    Google Scholar 

  • Petras, M. L. (1963). Genetic control of a serum esterase component in Mus musculus. Proc. Natl. Acad. Sci. USA 50112.

    Google Scholar 

  • Petras, M. L., and Biddle, F. G. (1967). Serum estarase in the house mouse, Mus musculus. Can. J. Genet. Cytol. 9704.

    Google Scholar 

  • Petras, M. L., and Sinclair, P. (1969). Another esterase variant in the kidney of the house mouse, Mus musculus. Can. J. Genet. Cytol. 1197.

    Google Scholar 

  • Popp, R. A., and Popp, D. M. (1962). Inheritance of serum esterases having different electrophoretic pattern. J. Hered. 53111.

    Google Scholar 

  • Robbi, M., and Beaufay, H. (1983). Purification and characterization of various esterases from rat liver. Eur. J. Biochem. 137293.

    Google Scholar 

  • Schollen, J., Bender, K., and von Deimling, O. (1975). Esterase. XXI. Es-9, a possibly new polymorphic esterase in Mus musculus genetically linked to Es-2. Biochem. Genet. 13369.

    Google Scholar 

  • Swank, R. T., and Paigen, K. (1973). Biochemical and genetic evidence for a macromolecular β-glucuronidase complex in microsomal membranes. J. Mol. Biol. 77371.

    Google Scholar 

  • Wassmer, B., de Looze, S. M., and von Deimling, O. (1985). Biochemistry and genetics of esterase-20 (ES-20), a second trimeric carboxyl esterase of the house mouse (Mus musculus). II. A unique recombination reveals ES-20 as a hybrid enzyme. Biochem. Genet. 23 759.

    Google Scholar 

  • Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. (1981). Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grant GM-33559 from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medda, S., von Deimling, O. & Swank, R.T. Identity of esterase-22 and egasyn, the protein which complexes with microsomal β-glucuronidase. Biochem Genet 24, 229–243 (1986). https://doi.org/10.1007/BF00502791

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502791

Key words

Navigation