Skip to main content
Log in

Subunit interaction: A molecular basis of heterosis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Acid phosphatase, a dimeric enzyme, in Drosophila malerkotliana was studied in isogenic flies to explore the molecular basis of heterosis. As the enzyme activity in heterozygotes is 34% more than that in the better parent (S/S), heterosis is indicated. V max, K m , and K i values are 14.60, 3.6×10−4 m, and 0.45×10−4 m, respectively, for the enzyme from F/S flies and 11.80, 4.0×10−4 m, and 0.37×10−4 m, respectively, for the enzyme from S/S flies. Thus heterosis for enzyme activity results from a better enzyme in F/S flies. The higher efficiency and better quality of the enzyme in F/S flies were traced to the heterodimeric allozyme, present only in heterozygotes. Enzyme activity, V max, K m , and K i values are 0.739, 42.1; 3.6×10−4 m, and 0.50×10−4 m, respectively, for the heterodimeric and 0.513, 36.8; 4.1×10−4 m, and 0.37×10−4 m, respectively, for the better parental homodimeric allozyme. On an equimolar basis the enzyme activity of the heterodimer is 44% higher than that of the better homodimer. The better performance of the heterodimer is probably a reflection of superior conformation resulting from interaction between component subunits (F and S polypeptides).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alahiotis, S. N. (1982). Adaptation of Drosophila enzymes to temperature. IV. Natural selection at the alcohol dehydrogenase locus. Genetica 5981.

    Google Scholar 

  • Beckman, G. (1970). Placental alkaline phosphatase, relation between phenotype and enzyme activity. Hum. Hered. 2074.

    Google Scholar 

  • Berger, E. M. (1974). Esterases of Drosophila. II. Biochemical studies of esterases-5 in D. pseudoobscura. Genetics 781157.

    Google Scholar 

  • Catcheside, D. G., and Overton, A. (1958). Complementation between alleles in heterokaryons. Cold Spring Harbor Symp. Quant. Biol. 23137.

    Google Scholar 

  • Chourey, P. S., and Nelson, O. F. (1979). Intra-allelic complementation at Sh locus in maize at enzyme level. Genetics 91317.

    Google Scholar 

  • Crick, F. H., and Orgel, L. E. (1964). The theory of interallelic complementation. J. Mol. Biol. 8161.

    Google Scholar 

  • Day, T. H., Hillar, P. C., and Clarke, B. (1974). Properties of genetically polymorphic isozymes of alcohol dehydrogenase in Drosophila melanogaster. Biochem. Genet. 11141.

    Google Scholar 

  • Dixon, M. (1953). The determination of enzyme inhibitor constants. Biochem. J. 55170.

    Google Scholar 

  • Ebitani, N. (1974). The variability and esterase activities of electrophoretic variants of Drosophila virilis. Dros. Info. Serv. 5131.

    Google Scholar 

  • Gahne, B., Bengtsson, S., and Sandberg, K. (1970). Genetic control of cholin esterase activity in horse serum. Anim. Blood Groups Biochem. Genet. 1207.

    Google Scholar 

  • Jackson, D. A., and Yanofsky (1969). The conformation and properties of dimers of tryptophan synthetase α-subunit of Escherichia coli. J. Biol. Chem. 2444526.

    Google Scholar 

  • Koehn, R. K. (1969). Esterase heterogeneity: Dynamics of a polymorphism. Science 163943.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • MacIntyre, R. J. (1971). A method of measuring activities of acid phosphatases separated by polyacrylamide gel electrophoresis. Biochem. Genet. 545.

    Google Scholar 

  • Miller, S., Pearcy, R. W., and Berger, E. (1975). Polymorphism at the α-glycerophosphate dehydrogenase locus in Drosophila melanogaster. Properties of adult allozymes. Biochem. Genet. 13175.

    Google Scholar 

  • Ott, L. A., and Scandalios, J. G. (1976). Genetically defined peptidases of maize. I. Biochemical characterization of allelic and non-allelic forms. Biochem. Genet. 14619.

    Google Scholar 

  • Parin, D. (1963). Complementation between products of the β-galactosidase structural gene of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28529.

    Google Scholar 

  • Parkash, R., and Gill, K. S. (1980). Biochemical characterisation of allelic acid phosphatases in Drosophila malerkotliana. Ind. J. Exp. Biol. 1861.

    Google Scholar 

  • Scandalios, J. G., Liu, E., and Campeau, M. A. (1972). The effects of intragenic and intergenic complementation on catalase structure and function in maize. A molecular approach to heterosis. Arch. Biochem. Biophys. 153695.

    Google Scholar 

  • Schlesinger, M., and Levinthal, C. (1963). Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J. Mol. Biol. 71.

    Google Scholar 

  • Schwartz, D., and Laughmer, W. J. (1969). A molecular basis of heterosis. Science 166626.

    Google Scholar 

  • Shafer, M. P., Hannon, W. H., and Levin, A. P. (1974). In vivo and in vitro complementation between Gua B and in vivo complementation between Gua A auxotrophs of Salmonella typhimurium. J. Bacteriol. 1171270.

    Google Scholar 

  • Sumiko, N. (1973). Esterase isozymes of Drosophila virilis: Purification and properties of α- and β-esterase isozymes. Jap. J. Genet. 48119.

    Google Scholar 

  • Trehan, K. S. (1983). Molecular Basis of Heterosis and Homeostatis Ph.D. thesis, Punjab Agricultural University, Ludhiana.

    Google Scholar 

  • Trehan, K. S., and Gill, K. S. (1983). Sub-unit interaction, a molecular basis of heterosis. XV Int. Cong. Genet., New Delhi, Abstr., Part I, p. 391.

  • Trehan, K. S., and Gill, K. S. (1985). Isolation and partial purification of allozymes of acid phosphatase from heterozygotes of Drosophila malerkotliana. Dros. Info. Serv. 61174.

    Google Scholar 

  • Trehan, K. S., and Gill, K. S. (1986). Effect of inbreeding on wing morphology in Drosophila malerkotliana. Dros. Info. Serv. 63130.

    Google Scholar 

  • Vigue, C. L., and Johnson, F. M. (1973). Isozyme variability in species of genus Drosophila. IV. Frequency property environment relationship of allelic alcohol dehydrogeanse in D. melanogaster. Biochem. Genet. 9213.

    Google Scholar 

  • Wills, C. J., and Nichols, L. (1971). Single gene heterosis in Drosophila revealed by inbreeding. Nature 233123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trehan, K.S., Gill, K.S. Subunit interaction: A molecular basis of heterosis. Biochem Genet 25, 855–862 (1987). https://doi.org/10.1007/BF00502605

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502605

Key words

Navigation