Skip to main content
Log in

Thermodynamic properties of ni nitrides and phase stability in the Ni-N system

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermodynamics of the Ni-N system is poorly known from experiments, and there is a need of information on the stability of the various nitride phases and the Ni-N phase diagram. This kind of information has been obtained by us, by combining the few measurements available with predictions, based on recently reported regularities in bonding properties and vibrational entropy of 3d transition metal compounds. A calculated Ni-N phase diagram is presented. A certain range of homogeneity for the hexagonal nitride phase is obtained, which is comparable to that of other 3d transition metal-nitrogen systems. The question of the possible existence of a stable “Ni4N” phase is examined. According to our results, Ni4N is metastable in the Ni-N system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (Academic Press, New York, 1970).

    Google Scholar 

  2. cf. the CALPHAD Journal, Pergamon Press.

  3. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  4. A. Fernández Guillermet and G. Grimvall, Phys. Rev. B 40:10582 (1989).

    Google Scholar 

  5. A. Fernández Guillermet and G. Grimvall, Z. Metallkunde 81:521 (1990).

    Google Scholar 

  6. K. Frisk, Trita-Mac-0393 (The Royal Institute of Technology, Stockholm, Sweden, April 1989).

    Google Scholar 

  7. K. Frisk, Metall. Trans. 21A:2477 (1990).

    Google Scholar 

  8. H. A. Wriedt, Bull. Alloy Phase Diagrams 6:558 (1985).

    Google Scholar 

  9. M. Hillert and M. Jarl, CALPHAD 2:227 (1978).

    Google Scholar 

  10. G. Inden, Project Meeting Calphad V, June 21–25, 1976, Max Planck Inst. Eisenforschung, GmbH, Dusseldorf, Germany, Vol. 111(4), pp. 1–13.

    Google Scholar 

  11. M. Hillert and L.-I. Staffansson, Acta Chem. Scand. 24:3618 (1970).

    Google Scholar 

  12. B. Sundman and J. Ågren, J. Phys. Chem. Solids 42:297 (1981).

    Google Scholar 

  13. M. Hillert, in Computer Modeling of Phase Diagrams, L. H. Bennett, ed. (The Metallurgical Society, Warrendale, 1986).

    Google Scholar 

  14. Scientific Group Thermodata Europe (SGTE). Data for Pure Elements, Report DMA(A)195 September 1989. Compiled by A. T. Dinsdale. National Physical Laboratory, Teddington, UK.

    Google Scholar 

  15. K. Frisk, CALPHAD 11:127 (1987).

    Google Scholar 

  16. A. Fernández Guillermet, Z. Metallkunde 78:639 (1987).

    Google Scholar 

  17. D. A. Papaconstantopoulos, J. L. Fry, and N. E. Brener, Phys. Rev. B 39:2526 (1988).

    Google Scholar 

  18. JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data 14:Suppl. 1 (1985).

    Google Scholar 

  19. B. Jansson, Ph.D. thesis (The Royal Institute of Technology, Stockholm, Sweden, 1984).

    Google Scholar 

  20. J. Rosén and G. Grimvall, Phys. Rev. B 27:7199 (1983).

    Google Scholar 

  21. G. Grimvall and J. Rosén, Int. J. Thermophys. 4:139 (1983).

    Google Scholar 

  22. G. Grimvall, High Temp.-High Press. 17:491 (1985).

    Google Scholar 

  23. G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986).

    Google Scholar 

  24. A. Fernández Guillermet and G. Grimvall, Phys. Rev. B 40:1521 (1989).

    Google Scholar 

  25. P. V. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).

    Google Scholar 

  26. A. Fernández Guillermet and G. Grimvall, J. Less-Common Met. 147:195 (1989).

    Google Scholar 

  27. H. A. Wriedt and O. D. Gonzalez, Trans. AIME 221:532 (1961).

    Google Scholar 

  28. H. Hahn and A. Konrad, Z. Anorg. Allg. Chem. 264:181 (1951).

    Google Scholar 

  29. A. Baiker and M. Maciejewski, J. Chem. Soc. Faraday Trans, 1 80:2331 (1984).

    Google Scholar 

  30. A. Y. Stomakhin, P. Bayer, and A. Y. Polyakov, Izv. Akad. Nauk SSSR Met. 4:37 (1965).

    Google Scholar 

  31. R. G. Blossey and R. D. Pehlke, Trans. Met. Soc. AIME 236:566 (1966).

    Google Scholar 

  32. V. I. Fedorchenko, V. V. Averin, and A. M. Samarin, Dokl. Akad. Nauk SSSR 183:894 (1968).

    Google Scholar 

  33. H. Wada, K. Gunji, and T. Wada, Trans. Iron Steel Inst. Jap. 8:329 (1968).

    Google Scholar 

  34. K. W. Lange and H. Schenck, Met. Trans. 1:2036 (1970).

    Google Scholar 

  35. M. Kawasaki, M. Tokuda, and M. Ohtani, Bull. Res. Inst. Min. Dress. Metall. Tohoku Univ. 35:99 (1979).

    Google Scholar 

  36. Y. V. Latash, G. F. Torkhov, Y. I. Kostenko, and N. N. Kalinyuk, Advances in Special Electrometallurgy 2:43 (1986).

    Google Scholar 

  37. R. J. Arnott and A. Wold, J. Phys. Chem. Solids 15:152 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández Guillermet, A., Frisk, K. Thermodynamic properties of ni nitrides and phase stability in the Ni-N system. Int J Thermophys 12, 417–431 (1991). https://doi.org/10.1007/BF00500762

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500762

Key words

Navigation