Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 285, Issue 3, pp 257–272 | Cite as

Analysis of seizures induced by a catechol-derivative

  • C. Kellogg
  • J. LaMantia
  • J. Jacobson


A drug, H13/04, with the structure of a catechol-amide, was found to evoke sound-induced seizures when injected into mice normally resistant to audiogenic seizures. The seizures produced appear to be age-related with maximal seizures elicited at 21–28 days postnatal age. This age pattern corresponds to the age-response pattern present in genetically seizure-sensitive strains of mice. The H13/04-evoked seizures can be prevented by pretreating the mice with l-dihydroxyphenylalanine or 5-hydroxytryptophan. Also clonidine, considered a noradrenaline receptor-stimulating agent, was protective against the drug-induced seizures. The pharmacological studies suggested the importance of noradrenaline in the protection against sound-induced seizures. Biochemical determinations of noradrenaline, dopamine and 5-hydroxytryptamine in the brain suggest an interaction between noradrenaline and serotonin which may be related to the age-dependent aspects of seizures. H13/04 was not effective in reverting genetically-sensitive strains of mice to a high incidence of sound-induced seizures at an age when they normally develop resistance. This observation indicates that H13/04 is specific for induction of sound-induced seizures and does not act just as a general convulsive agent. In young animals at 21 days of age, H13/04 also elicits spontaneous seizures and this form of seizure can be prevented by pretreating the mice with sodium phenobarbital at a dose of 7 mg/kg. Such pretreatment does not, however, prevent the sound-induced seizure. Hence the drug H13/04 will be extremely useful in delineating mechanisms underlying seizure activity, particularily those related to age-dependent seizure activity.

Key words

H13/04 Catechol-Derivative Sound-Induced Seizures Mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G. J., Kopellof, L. M., Alexander, R.: Anticonvulsive effect of p-chlorophenylalanine in audiosensitive mice. Life Sci. 10, 877–882 (1971)Google Scholar
  2. Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967)Google Scholar
  3. Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor stimulation by clonidine. Life Sci. 9, 513–523 (1970)Google Scholar
  4. Atack, C. V.: The determination of dopamine by a modification of the dihydroxyindol fluorimetric assay. Brit. J. Pharmacol. 48, 699–714 (1973)Google Scholar
  5. Atack, C. V., Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single cation exchange column, by means of mineral acid-organic solvent mixtures. J. Pharm. Pharmacol. 22, 625–627 (1970)Google Scholar
  6. Atack, C. V., Lindqvist, M.: Conjoint native and orthophthaldialdehyde-condensate assays for the fluorimetric determination of 5-hydroxyindoles in brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 267–284 (1973)Google Scholar
  7. Bartholini, G. and Pletscher, A.: Effect of various decarboxylase inhibitors on the cerebral metabolism of dihydroxyphenylalanine. J. Pharm. Pharmacol. 21, 323–324 (1969)Google Scholar
  8. Bertler, A., Carlsson, A., Rosengren, E.: A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta physiol. scand. 44, 273–292 (1958)Google Scholar
  9. Boggan, W., Seiden, L.: Dopa reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 6, 215–217 (1971)Google Scholar
  10. Boggan, W., Seiden, L.: 5-hydroxytryptophan reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 10, 9–12 (1973)Google Scholar
  11. Burés, J.: Electrophysiological and functional analysis of the audiogenic seizure. Colloq. Int. Cent. Nat. Recherche Sci. (Paris) 112, 165–180 (1963)Google Scholar
  12. Fuller, J. L., Collins, R. L.: Mice unilaterally sensitized for audiogenic seizures. Science 162, 1295 (1968)Google Scholar
  13. Fuller, J. L., Easler, C., Smith, M. E.: Inheritance of audiogenic seizure susceptibility in mice. Genetics 35, 622–632 (1950)Google Scholar
  14. Henry, K. R.: Audiogenic seizure susceptibility induced in C57BL/6J mice by prior auditory exposure. Science 158, 938–940 (1967)Google Scholar
  15. Iturrian, W. B., Fink, G. B.: Influence of age and brief auditory conditioning upon experimental seizures in mice. Develop. Psychobiol. 2, 10–18 (1969)Google Scholar
  16. Jobe, P. C., Picihioni, A. L., Chin, L.: Role of brain norepinephrine in audiogenic seizure in the rat. J. Pharmacol. exp. Ther. 184, 1–10 (1973)Google Scholar
  17. Kellogg, C.: Serotonin metabolism in the brains of mice sensitive or resistant to audiogenic seizures. J. Neurobiol. 2, 209–219 (1971)Google Scholar
  18. King, L. T., Lowry, O. H., Passensaw, J. V., Venson, V.: Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14, 599–611 (1969)Google Scholar
  19. Knapp, S., Mandell, A.: Parachlorophenylalanine—its three phase sequence of interactions with the two forms of brain tryptophan hydroxylase. Life Sci. 11, 761–771 (1972)Google Scholar
  20. Kruskinsky, L. V., Molodkina, L. N., Fless, D. A., Dobrokhotova, L. P., Steshenko, A. P., Semiokhina, A. F., Zorina, Z. A., Romanova, L. G.: The functional state of the brain during sonic stimulation. In: Physiological Effects of Noise. Eds.: B. S. Welch and A. S. Welch, pp. 159–183. New York: Plenum Press 1970Google Scholar
  21. Lehmann, A. G.: Modification de l'intensite de la crise audiogéne par des substances active sur le métabolism des amines biogénes du cerveau de souris. C. P. Soc. Biol. (Paris) 162, 24–27 (1968)Google Scholar
  22. Lehmann, A. G.: Psychopharmacology of the noise response, with special reference to audiogenic seizure in mice. In: Physiological effects of noise. Eds.: B. L. Welch and A. S. Welch, pp. 227–257. New York: Plenum Press 1970Google Scholar
  23. Lehmann, A. G., Busnel, R. G.: A study of the audiogenic seizure. In: Acoustic behavior of animals. Ed.: R. G. Busnel, pp. 244–274. Amsterdam: Elsevier 1963Google Scholar
  24. Lindqvist, M.: Quantitative estimation of 5-hydroxy-3-indole acetic acid and 5-hydroxytryptophan in the brain following isolation by means of a strong cation exchange column. Acta pharmacol. (Kbh.) 29, 303–313 (1971)Google Scholar
  25. Pylkko, O. O., Woodbury, D. M.: The effect of maturation on chemically induced seizures in rats. J. Pharmacol exp. Ther. 131, 185–190 (1961)Google Scholar
  26. Schlesinger, K., Boggan, W., Freedman, D.: Genetics of audiogenic seizures. I. Relation to brain serotonin and norepinephrine in mice. Life Sci. 4, 2345–2351 (1965)Google Scholar
  27. Schlesinger, K., Boggan, W., Freedman, D.: Genetics of audiogenic seizures. II. Effects of pharmacological manipulation of brain serotonin, norepinephrine, and gamma-aminobutyric acid. Life Sci. 7, 437–447 (1968a)Google Scholar
  28. Schlesinger, K., Boggan, W. O., Griek, B. J.: Pharmacological correlates of pentylenetetrazol and electroconvulsive seizure thresholds in mice. Psychopharmacology 13, 181–188 (1968b)Google Scholar
  29. Servit, Z.: Les mechanisms reflexes dans la pathogenie des crises audiogenes. Colloq. Int. Cent. Nat. Recherche Sci. (Paris) 112, 101–120 (1963)Google Scholar
  30. Swinyard, E. A.: Some physiological properties of audiogenic seizures in mice and their alteration by drugs. Colloq. Int. Cent. Nat. Recherche Sci. (Paris) 112, (1963) 405–428Google Scholar
  31. Toman, J. E. P., Taylor, J. D.: Mechanisms of action and metabolism of anticonvulsants. Epilepsia 1, 31–48 (1952)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • C. Kellogg
    • 1
  • J. LaMantia
    • 1
  • J. Jacobson
    • 1
  1. 1.Department of PsychologyUniversity of RochesterRoschesterUSA

Personalised recommendations