Skip to main content
Log in

Oxidative metabolism of chicken polymorphonuclear leucocytes during phagocytosis

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The oxidative response to phagocytosis by chicken polymorphonuclear leucocytes was investigated as compared to guinea pig polymorphonuclear leucocytes.

The polymorphs from both species respond to phagocytosis with an increased oxygen consumption, an increased generation of O2 and H2O2, and an increased oxidation of glucose through the hexose monophosphate shunt. The rate of oxygen consumption, and generation of O2 and H2O2 by phagocytosing chicken polymorphonuclear leucocytes is considerably lower than with phagocytosing guinea pig polymorphonuclear leucocytes. By contrast, the extent of hexose monophosphate shunt stimulation in chicken polymorphs is comparable to that of guinea pig polymorphs. Evidence is presented suggesting that H2O2 is preferentially degraded in chicken cells through the glutathione cycle, whereas catalase and myeloperoxidase are the two main H2O2 degrading enzymes in guinea pig cells.

The 20,000 g fraction of the postnuclear supernatant of chicken polymorphs contains a cyanide-insensitive NADPH oxidizing activity which is stimulated during phagocytosis. Similar properties for the NADPH oxidizing activity of guinea pig polymorphs have been previously reported.

It is concluded that the metabolic burst of phagocytosing chicken polymorphonuclear leucocytes is qualitatively similar to that of guinea pig polymorphonuclear leucocytes, but the latter cells are more active in all the biochemical parameters that have been measured. The difference in the H2O2 degradation pathways between the two species is accounted for by the lack of myeloperoxidase and catalase in chicken polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zatti, M. and Rossi, F., 1968. Experientia 24, 669–670.

    Google Scholar 

  2. Homan-Müller, J. W. T., Weening, R. S. and Roos, D., 1975. J. Lab. Clin. Med. 85, 198–207.

    Google Scholar 

  3. Root, R. K., Metcalf, J., Oshino, N. and Chance, B., 1975. J. Clin. Invest. 55, 945–955.

    Google Scholar 

  4. Babior, K. M., Kipnes, R. S. and Curnutte, J. T., 1973. J. Clin. Invest. 52, 741–744.

    Google Scholar 

  5. Weening, R. S., Wever, R. and Roos, D., 1975. J. Lab. Clin. Med. 85, 245–252.

    Google Scholar 

  6. McCord, J. M. and Fridovich, I., 1969. J. Biol. Chem. 244, 6049–6055.

    Google Scholar 

  7. Pennial, R. and Spitznagel, J. K., 1975. Proc. Nat. Acad. Sci. USA 72, 5012–5015.

    Google Scholar 

  8. Patriarca, P., Dri, P., Kakinuma, K. and Rossi, F., 1976. Molec. and Cell Biochem. 12, 137–146.

    Google Scholar 

  9. Patriarca, P., Cramer, R., Marussi, M., Moncalvo, S. and Rossi, F., 1971. J. Reticuloendothel. Soc. 10, 251–268.

    Google Scholar 

  10. Thurman, R. G., Ley, H. G. and Scholz, R., 1972. Eur. J. Biochem. 25, 420–430.

    Google Scholar 

  11. Dri, P., Bellavite, P. and Rossi, F., 1978. Molec. and Cell Biochem. In press.

  12. Bray, G. A., 1960. Anal. Biochem. 1, 279–285.

    Google Scholar 

  13. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F. and Romeo, D., 1971. Arch. Biochem. Biophys. 145, 255–262.

    Google Scholar 

  14. Rossi, F. and Zatti, M., 1966. Biochim. Biophys. Acta 121, 110–119.

    Google Scholar 

  15. Rossi, F., Zabucchi, G. and Romeo, D., 1975. In Mononuclear Phagocytes in Immunity, Infection and Pathology (Van Furth, R. ed.) pp. 441–462, Blackwell Scientific Publications, Oxford.

  16. Rossi, F., Romeo, D. and Patriarca, P., 1972. J. Reticuloendothel. Soc. 12, 127–149.

    Google Scholar 

  17. Bellavite, P., Dri, P., Bisiacchi, B. and Patriarca, P., 1977. FEBS Lett. 81, 73–76.

    Google Scholar 

  18. Breton-Gorius, J., Coquin, Y. and Guichard, J., 1978. Lab. Invest. 38, 21–31.

    Google Scholar 

  19. Iyer, G. Y. N., Islam, M. F. and Quastel, J. H., 1961. Nature (London) 192, 535–541.

    Google Scholar 

  20. Klebanoff, S. J. and Pincus, S. H., 1971. J. Clin. Invest. 50, 2226–2229.

    Google Scholar 

  21. Klebanoff; S. J. and Hamon, C. B., 1972. J. Reticuloendothel. Soc. 12, 170–196.

    Google Scholar 

  22. Brune, K. and Spitznagel, J. K., 1973. J. Infect. Dis. 127, 84–94.

    Google Scholar 

  23. Rausch, P. G. and Moore, T. G., 1975. Blood 46, 913–919.

    Google Scholar 

  24. Rossi, F., Patriarca, P. and Romeo, D. 1971. In the Reticuloendothelial System and Immune Phenomena (Di Luzio, N.R. ed.) pp. 191–208; Plenum Press, New York and London.

  25. Patriarca, P., Cramer, R. and Dri, P., 1977. In Movement, Metabolism and Bactericidal Mechanisms of Phagocytes (Rossi, F., Patriarca, P. and Romeo, D. eds.) pp. 167–174, Piccin Editore, Padua and London.

  26. Rossi, F. and Zatti, M., 1964. Brit. J. Exp. Pathol. 45, 548–559.

    Google Scholar 

  27. Romeo, D., Zabucchi, G., Soranzo, M. R. and Rossi, F., 1971. Biochem. Biophys. Res. Commun. 45, 1056–1061.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dri, P., Bisiacchi, B., Cramer, R. et al. Oxidative metabolism of chicken polymorphonuclear leucocytes during phagocytosis. Mol Cell Biochem 22, 159–166 (1978). https://doi.org/10.1007/BF00496242

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00496242

Keywords

Navigation