Skip to main content
Log in

Comparative immunocytochemical localization of putative opioid ligands in the central nervous system

  • Published:
Histochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

We report a detailed comparative immunocytochemical mapping of enkephalin, CCK and ACTH/gb-endorphin immunoreactive nerves in the central nervous system of rat and guinea pig. Enkephalin immunoreactivity was detected in many groups of nerve cell bodies, fibers and terminals in the limbic system, basal ganglia, hypothalamus, thalamus, brain stem and spinal cord. β-endorphin and ACTH immunoreactivity was limited to a single group of nerve cell bodies in and around the arcuate nucleus and in fibers and terminals in the midline areas of the hypothalamus, thalamus and mesencephalic periaqueductal gray with lateral extensions to the amygdaloid area. Cholecystokinin immunoreactive nerve fibers and terminals displayed a distribution similar to that of enkephalin in many regions; but striking differences were also found. An immunocytochemical doublestaining technique, which allowed simultaneous detection of two different peptides in the same tissue section, showed that enkephalin-, CCK- and ACTH/β-endorphin-immunoreactive nerves although closely intermingled in many brain areas, occurred separately. The distributions of nerve terminals containing these neuropeptides showed striking overlaps and also paralleled the distribution of opiate receptors. This may suggest that enkephalin, CCK, ACTH and β-endorphin may interact with each other and with opiate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

Commissura anterior

CAI:

Capsula interna

CO:

Chiasma opticum

CPF:

Cortex piriformis

CSDD:

Commissura supraoptica dorsalis, pars dorsalis (Ganser)

CSDV:

Commissura supraoptica dorsalis, pars ventralis (Meynert)

FMP:

Fasciculus medialis prosencephali

FOR:

Formatio reticularis

GD:

Gyrus dentatus

GP:

Glubus pallidus

H:

Habenula

HI:

Hippocampus

S:

Subiculum

SGCD:

Substantia grisea centralis, pars dorsalis

SGCL:

Substantia grisea centralis, pars lateralis

SGPV:

Substantia grisea periventricularis

SNC:

Substantia nigra, zona compacta

SNL:

Substantia nigra, pars lateralis

ST:

Stria terminalis

STP:

Stria terminalis, pars precommissuralis

TD:

Tractus diagonalis (Broca)

TO:

Tractus opticus

TSHT:

Tractus septohypothalamicus

TUOP:

Tuberculum olfactorium, pars corticalis

SUM:

Decussatio supramamillaris

a:

Nucleus accumbens

ac:

Nucleus amygdaloideus centralis

aco:

Nucleus amygdaloideus corticalis

am:

Nucleus amygdaloideus medialis

ar:

Nucleus arcuatus

cp:

Nucleus caudatus putamen

dcgl:

Nucleus dorsalis corporis geniculati lateralis

em:

Eminentia mediana

fm:

Nucleus paraventricularis, pars magnocellularis

fp:

Nucleus paraventricularis, pars parvocellularis

ha:

Nucleus anterior (hypothalami)

hd:

Nucleus dorsomedialis (hypothalami)

hl:

Nucleus lateralis (hypothalami)

hp:

Nucleus posterior (hypothalami)

hpv:

Nucleus periventricularis (hypothalami)

hv:

Nucleus ventromedialis (hypothalami)

ip:

Nucleus interpeduncularis

mcgm:

Nucleus marginalis corporis geniculatic medialis

mm:

Nucleus mammillaris medialis

ml:

Nucleus mammillaris lateralis

mh:

Nucleus medialis habenulae

p:

Nucleus pretectalis

pf:

Nucleus parafascicularis

pom:

Nucleus preopticus medialis

pop:

Nucleus preopticus periventricularis

posc:

Nucleus preopticus, pars suprachiasmatica

pt:

Nucleus paratenialis

pvs:

Nucleus periventricularis stellatocellularis

re:

Nucleus reuniens

sc:

Nucleus suprachiasmaticus

sl:

Nucleus septi lateralis

so:

Nucleus supraopticus

st:

Nucleus interstitialis striae terminalis

tad:

Nucleus anterior dorsalis thalami

tam:

Nucleus anterior medialis thalami

tav:

Nucleus anterior ventralis thalami

td:

Nucleus tractus diagonalis (Broca)

th:

Nuclei thalami

tl:

Nucleus lateralis thalami

tlp:

Nucleus lateralis thalami, pars posterior

tm:

Nucleus medialis thalami

tml:

Nucleus medialis thalami, pars lateralis

tmm:

Nucleus medialis thalami, pars medialis

tpo:

Nucleus posterior thalami

tr:

Nucleus reticularis thalami

tv:

Nucleus ventralis thalami

tvd:

Nucleus ventralis thalami, pars dorsomedialis

tvm:

Nucleus ventralis medialis thalami, pars magnocellularis

References

  • Atweh SF, Kuhar MJ (1977a) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and medulla. Brain Res 124:53–67

    Google Scholar 

  • Atweh SF, Kuhar MJ (1977b) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1–12

    Google Scholar 

  • Atweh SF, Kuhar MJ (1977c) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405

    Google Scholar 

  • Baxter MG, Goff E, Miller AA, Saunders IA (1977) Effect of a potent synthetic opioid pentapeptide in some antinociceptive and behavioral tests in mice and rats. Br J Pharmacol 59:455–459

    Google Scholar 

  • Bloom F, Battenberg E, Rossier J, Guillemin R (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies. Proc Natl Acad Sci USA 75:1591–1595

    Google Scholar 

  • Bruce MK, Castellanos FX, Kastin AJ, Berzas MC, Marik MD, Olson GA, Olson RD (1979) Naloxone-induced suppression of food intake in normal and hypothalamic obese rats. Pharmacol Biochem Behav 11:729–732

    Google Scholar 

  • Buscher HH, Hill RC, Römer D, Cardinaux A, Closse A, Hauser D, Pless J (1976) Evidence for analgesic activity of enkephalin in the mouse. Nature 261:423–425

    Google Scholar 

  • Chang K-J, Cooper BR, Hazum E, Cuatrecasas P (1979) Multiple opiate receptors: Different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol 16:91–104

    Google Scholar 

  • Childers SR, Creese I, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Phamacol 55:11–18

    Google Scholar 

  • Della-Ferra MA, Baile CA (1979) Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding. Science 206:471–473

    Google Scholar 

  • DeWied D (1977) Hormonal influences on motivation, learning and memory processes. Hosp Pract 11:123–131

    Google Scholar 

  • DeWied D, Gispen WH (1977) Behavioral effects of peptides. In: Gainer H (ed) Peptides in neurobiology. Plenum Press, New York, pp 391–442

    Google Scholar 

  • Dodd J, Kelly JS (1979) Cholecystokinin peptides: excitatory effect on hippocampal neurons. J Physiol (London) 195:61P

    Google Scholar 

  • Duggan AW, Hall JG, Headly PR (1976) Morphine, enkephalin and the substantia gelatinosa. Nature 264:456–458

    Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubule of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    Google Scholar 

  • Grandison L, Guidotti A (1977) Stimulation of food intake by muscimol and beta-endorphin. Neuropharmacology 16:533–536

    Google Scholar 

  • Gähwiler BH (1980) Excitatory action of opioid peptides and opiates on cultured hippocampal pyramidal cells. Brain Res 194:193–203

    Google Scholar 

  • Hong JS, Wood PL, Gillin JC, Yang HYT, Costa E (1980) Changes of hippocampal met-enkephalin content after recurrent motor seizures. Nature 285:231–232

    Google Scholar 

  • Hökfelt T, Elde R, Johansson D, Terenius L, Stein L (1977a) Distribution of enkephalin-like immunoreactivity in the rat central nervous system. I. Cell bodies. Neurosci Lett 5:25–31

    Google Scholar 

  • Hökfelt T, Ljünadal H, Terenius L, Elde R, Nilsson G (1977b) Immunohistochemical analysis of peptide pathways possible related to pain and analgesia: Enkephalin and substance-P. Proc Natl Acad Sci USA 74:3081–3085

    Google Scholar 

  • Innis RB, Correa FMA, Uhl GR, Schneider B, Snyder SH (1979) Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. Proc Natl Acad Sci USA 76:521–525

    Google Scholar 

  • Larsson L-I (1977) Corticotropin-like peptides in central nerves and in endocrine cells of gut and pancreas. Lancet 2:1321–1323

    Google Scholar 

  • Larsson L-I (1978) Distribution of ACTH-like immunoreactivity in rat brain and gastrointestinal tract. Histochemistry 55:225–233

    Google Scholar 

  • Larsson L-I (1980) Immunocytochemical characterization of ACTH-like immunoreactivity in cerebral nerves and in endocrine cells of the pituitary and gastrointestinal tract by using region specific antisera. J Histochem Cytochem 28:133–141

    Google Scholar 

  • Larsson L-I, Childers S, Snyder SH (1979) Methionine and leucine-enkephalin occur in separate neurons. Nature 282:407–411

    Google Scholar 

  • Larsson L-I, Rehfeld JF (1977) Characterization of antral gastrin cells with region-specific antisera. J Histochem Cytochem 25:1317–1321

    Google Scholar 

  • Larsson L-I, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218

    Google Scholar 

  • Lien EL, Fenichel RL, Garsky V, Sarantarkis D, Grant DH (1976) Enkephalin stimulated prolactin release. Life Sci 19:837–840

    Google Scholar 

  • Loh HH, Tseng LF, Wei E, Li CH (1976) β-endorphin is a potent analgesic agent. Proc Natl Acad Sci USA 73:2895–2898

    Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonist and receptors. Nature 267:495–500

    Google Scholar 

  • Mains RE, Eipper BA (1979) Synthesis and secretion of corticotropin, melanotrophins, and endorphins by rat intermediate pituitary cells. J Biol Chem 254:7885–7894

    Google Scholar 

  • Nilaver G, Zimmerman CA, Defentini R, Liotta AS, Krieger DT, Brownstein MJ (1979) Adrenocortitropin and β-lipotropin in the hypothalamus. J Cell Biol 81:50–58

    Google Scholar 

  • Pert A, Sivet C (1977) Neuroanatomical focus for morphine and enkephalin induced hypermotility. Nature 265:645–647

    Google Scholar 

  • Plom GII, Van Ree JM (1978) Adrenocorticotropic hormone fragments mimic the effect of morphine in vitro. Br J Pharmacol 64:223–227

    Google Scholar 

  • Rivier C, Vale W, Ling N, Brown M, Guillemin R (1977) Stimulation in vivo of the secretion of prolactin and growth hormone by β-endorphin. Endocrinology 100:238–241

    Google Scholar 

  • Rodgers RJ, File SE (1979) Exploratory behaviour and aversive threshold following intra-amygdaloid application of opiates in rats. Pharmacol Biochem Behav 11:505–511

    Google Scholar 

  • Rossier J, Battenberg E, Dittman Q, Bayon A, Koda L, Miller R, Guillemin R, Bloom F (1979) Hypothalamic enkephalin neurons may regulate the neurohypophysis. Nature 27:653–655

    Google Scholar 

  • Saito A, Sankaran H, Goldfine ID, Williams JA (1980) Cholecystokinin receptors in the brain: Characterization and distribution. Science 208:1155–1156

    Google Scholar 

  • Sar M, Stumpf WE, Miller RJ, Chang K-J, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38

    Google Scholar 

  • Schiller PW, Lipton A, Horrobin DF, Bodansky M (1978) Unsulfated C-terminal 7-peptide of cholecystokinin: A new ligand of the opiate receptor. Biochem Biophys Res Commun 85:1332–1338

    Google Scholar 

  • Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: Immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci USA 74:2167–2171

    Google Scholar 

  • Stengaard-Pedersen K, Larsson L-I (1981) Interaction of putative opioid peptides with opiate receptors. Acta Pharmacol Toxicol 48:39–46

    Google Scholar 

  • Sternberger LA (1974) Immunocytochemistry. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Storm-Mathisen J (1977) Localization of transmitter candidates in the brain: The hippocampal formation as a model. In: Progress in neurobiology, Vol 8. Pergamon Press, London, pp 119–181

    Google Scholar 

  • Terenius L, Gispen WH, De Wied D (1975) ACTH-like peptides and opiate receptors in the rat brain: Structure-activity studies. Eur J Pharmacol 33:395–399

    Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, De May J, Gilles C (1980) Immunocytochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77:1190–1194

    Google Scholar 

  • Wamsky JK, Young WS, Kuhar MJ (1980) Immunohistochemical localization of enkephalin in rat forebrain. Brain Res 190:153–174

    Google Scholar 

  • Watkins WB (1980) Presence of adrenocorticotropin and β-endorphin immunoreactivities in the magnocellular neurosecretory system of the rat hypothalamus. Cell Tissue Res 207:65–80

    Google Scholar 

  • Zetler G (1979) Antagonism of cholecystokinin-like peptides by opioid peptides, morphine or tetrodotoxin. Eur J Pharmacol 60:67–77

    Google Scholar 

  • Zieglgänsberger W, French ED, Siggins GR, Bloom FE (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205:414–417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengaard-Pedersen, K., Larsson, L.I. Comparative immunocytochemical localization of putative opioid ligands in the central nervous system. Histochemistry 73, 89–114 (1981). https://doi.org/10.1007/BF00493136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00493136

Keywords

Navigation